100學年第二學期東海大學教師授課計劃表
Course Plan of Tunghai University
for 2012 Spring
一.課程基本資料 Course Information
開課系所 Department (日)數學系 Mathematics
課程名稱 Course Title 微積分A下電機系一  Calculus A2 for EE
課程編號 Course Number 24120 學分數 Credits 4 - 4
必選修類別 Required/Elective 必修 先修課程 Prerequisites  
先修課程說明
Prerequisites instruction
微積分A上(Calculus A1)
課程概述(系所共同性目標)
Course Description
冪級數理論及其應用、多變數函數之微分學及其應用、 多重積分及其應用

Power Series, Differentiation and Integration for functions of several variables and their applications.

二、教學相關資料 Instruction Information
授課教師資料
授課教師 Instructor

沈淵源

 billshen@thu.edu.tw

011-886-4-2359-0121X32511

上課時間 (地點)
Time (Place) to meet
M 16:20--18:00(ST529), W 14:10--15:00 (HT 007) and F 11:20--12:00 (ST 523)
晤談時間Office Hours

時間 Time: Tuesday 5:00pm-6:00pm & Wednesday 9:00am-10:00am 或另約 or by appointment

地點Office: ST611(Tel. 2359-0121-ext32511)

教學助理資料
教學助理
Teaching Assistant
林懌: 辦公室 Office:  ST601 分機 Ext 32505
課業討論時間
Recitation Class
Wednesday15:20--16:10(ST 529) 聯絡方式
Contact Information
電話(Phone): 分機 Ext 32505

Email: linyiz0801@thu.edu.tw

三、課程大綱 Syllabus
■  課程目標 (Course Objectives)

此課程為科學研究的基礎﹐我們要談如何以數學的方法來研究變動中的事物。

包括四個主要的大課題:有連續性、是微分法、是積分法還有級數之收斂性。

原理與計算並重。上學期講單變數微積分而下學期則談級數與多變數微積分

不管你將來要走向那一個行業﹐此種訓練對你百分之百是必要且大有好處的。

讓我們以嶄新的心情﹐用有限理性來探討那深藏無限奧祕又豐盛無比的真理。

■  主要參考書籍/資料 (Textbooks and References)    Stewart Calculus, 5th ed.
 教學進度(分週次說明教學內容主題與指定閱讀資料)(Course Schedule)  注意 Note: RQ = Reading Quiz
週次
Week
日期Date 內容主題 與進度 Course Topics and Class Schedule
指定閱讀資料連結 Course Reading Materials Links
1 02/19 ~ 02/25 02/20:Review on Series 

02/22:Review on Power Series  with one application,  Introduction to ODE

02/24:1st order ODE's of the form y'= f(x,y). linear, separable, exact   RQ #01

2 02/26 ~ 03/03

02/29:Second-Order Linear ODE's; Theory: H, NH; Particular Solution: UC, VP

03/02:Application of Power Series on solving ODE's: Series Solution at Ordinary Point

03/03=02/27:More on Linear ODE's: Operator Method   RQ #02  

3 03/04 ~ 03/10 03/05:No classes for bad reason. Have a nice day, anyway.       

03/07:Functions of Several Variables and Their Graphs: RectangularC, CylindricalC, SphericalC

03/09:Differentiability on Several Variables Functions    RQ #03

4 03/11 ~ 03/17 03/12:Tangent Plane Approach for Functions of 2 Variables on Differentiability   

03/14:Partial Derivatives for Functions of Several Variables

03/16:Directional Derivatives        RQ #04         

5 03/18 ~ 03/24 03/19:Directional Derivatives and Chain Rules      

03/21:More on Chain Rules        

03/23:Applications of Chain Rule including Tangent Planes Again         RQ #05   

6 03/25 ~ 03/31 03/26:1st Mid-Term Exam (Review of the exams from last semester is helpful)   key to 1st mid-term            

03/28:Absolute Maxima and Minima

03/30:Second Derivative Test for Relative Extrema       

7 04/01 ~ 04/07 04/02:Method of Lagrange Multipliers

04/04:Spring Break

04/06:Spring Break   

8 04/08 ~ 04/14 04/09:Double Integrals in Rectangular Coordinates, Fubini Theorem

04/11:Double Integrals in Polar Coordinates      RQ #06

04/13:No classes (Happy Study Day!)

9 04/15 ~ 04/21 Mid-Term Exam
10 04/22 ~ 04/28 04/23:Go over Mid-Term Exam with T. A.

04/25:Triple Integrals in Rectangular Coordinates       RQ #07

04/27:Triple Integrals in Cylindrical Coordinates  

11 04/29 ~ 05/05 04/30:Triple Integrals in Spherical Coordinates    Surface Area

05/02:Change of Variables on Multiple Integrals      RQ #08 

05/04:More on Change of Variables on Multiple Integrals    

12 05/06 ~ 05/12 05/07:Line Integrals of a Scalar Field, Line Int's of a VF     RQ #09  

05/09:Fundamental Theorem on Line Integrals (Statement)

05/11:More on FTLI    Example  Wiki

13 05/13 ~ 05/19 05/14:Conservation of Energy and  Green Theorem   RQ #10    

05/16:Green Theorem and its Applications  

05/18:Curl and Divergence  of Vector Fields

05/19:Study day for 1st final exam (No Class)       RQ #11

14 05/20 ~ 05/26 05/21:1st Final Exam            

05/23:Surface Area  (Differential Surface Area)

05/25:Mass of Lamina and Surface Integrals    RQ #12

15 05/27 ~ 06/02 05/28:Oriented Surfaces and Flux           

05/30:Flux Integrals     Ex1    Ex2      RQ #13

06/01:Stokes' Theorem   

16 06/03 ~ 06/09 06/04:More on Stokes' Theorem          RQ #14 

06/06:Divergence Theorem

06/08:More on Divergence Theorem   RQ #15                           

17 06/10 ~ 06/16 06/11:2nd Final Exam                                   

06/13:Review

06/15:No classes (Happy Study Day!)

18 06/17 ~ 06/23 期末考試週 Final Examination Week
 
■  評分方式 (Grading Policy)

 
  評分項目
Assessment Item
配分比例
Percentage
相關說明
Description
1 期中考試A (Mid-term Exam A) 20% 03/26
2 期中考試 (Mid-term Exam) 20% 04/15 ~ 04/21
3 期末考試A (Final Exam A) 20% 05/21
4 期末考試  (Final Exam) 20% 06/11  or  06/17 ~ 06/23 if needed
5 閱讀測驗(Reading Quizzes) 20% 每 週一次(Once a week)