1st Midterm Exam for Calculus A2-EE

Class: \qquad Name : \qquad Student ID \# : \qquad

Part A Multiple-Choice (20\%)

1. If $f^{\prime}(x)=-f(x)$ and $f(1)=1$, then $f(x)=$
(A) $\frac{1}{2} e^{-2 x+2}$
(B) e^{-x-1}
(C) e^{1-x}
(D) e^{-x}
(E) $-e^{x}$
2. If $y^{\prime \prime}=2 y^{\prime}$ and if $y=y^{\prime}=e$ when $x=0$, then when $x=1, y=$
(A) $\frac{e}{2}\left(e^{2}+1\right)$
(B) e
(C) $\frac{e^{3}}{2}$
(D) $\frac{e}{2}$
(E) $\frac{e^{3}-e}{2}$
3. If f is the solution of $x f^{\prime}(x)-f(x)=x$ such that $f(-1)=1$, then $f\left(e^{-1}\right)=$
(A) $-2 e^{-1}$
(B) 0
(C) e^{-1}
(D) $-e^{-1}$
(E) $2 e^{-2}$
4. If $f^{\prime \prime}(x)-f^{\prime}(x)-2 f(x)=0, f^{\prime}(0)=-2$, and $f(0)=2$, then $f(1)=$
(A) $e^{2}+e^{-1}$
(B) 1
(C) 0
(D) e^{2}
(E) $2 e^{-1}$

Part B Free-Response Questions (80\%)

1. Find the sum of the series: $\quad \sum_{n=1}^{\infty} \frac{n}{3^{n}}$
2. Solve the DE: $\quad y^{\prime}+2 y=2 e^{x}$
3. Solve the initial-value problem: $\quad x y^{\prime}=y+x^{2} \sin x, \quad y(\pi)=0$
4. Solve the initial-value problem: $\quad 2 y^{\prime \prime}+5 y^{\prime}+3 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-4$
5. Solve the DE using the method of undetermined coefficients:

$$
y^{\prime \prime}-4 y^{\prime}+5 y=e^{-x}
$$

6. Let f and g be functions that are differentiable for all real number x and that have the following properties: (i) $f^{\prime}(x)=f(x)-g(x) \quad$ (ii) $g^{\prime}(x)=g(x)-f(x) \quad$ (iii) $f(0)=7 \quad$ (iv) $g(0)=11$ It is easy to see that $f(x)+g(x)=18$ for all x. Use this fact to find $f(x)$ and $g(x)$, show your work.
7. Let $f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
(a) Find $f_{x}(x, y)$ and $f_{y}(x, y)$ when $(x, y) \neq(0,0)$
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$ using definition.
(c) Show that $f_{x y}(0,0)=-1$ and $f_{y x}(0,0)=1$
8. Find the linear approximation of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(3,2,6)$ and use it to estimate the number $\sqrt{(3.02)^{2}+(1.97)^{2}+(5.99)^{2}}$
