1st Midterm Exam for Calculus A2-EE

3/26/2012

 Class :
 Name :
 Student ID # :

Part A Multiple-Choice (20%)

- 1. If f'(x) = -f(x) and f(1) = 1, then f(x) =(A) $\frac{1}{2}e^{-2x+2}$ (B) e^{-x-1} (C) e^{1-x} (D) e^{-x}
 - (E) $-e^x$
- 2. If y'' = 2y' and if y = y' = e when x = 0, then when x = 1, y =
 - (A) $\frac{e}{2}(e^2+1)$ (B) *e* (C) $\frac{e^3}{2}$ (D) $\frac{\overline{e}}{2}$ (E) $\frac{e^3 - e}{2}$

3. If f is the solution of xf'(x) - f(x) = x such that f(-1) = 1, then $f(e^{-1}) = 1$

- (A) $-2e^{-1}$
- (B) 0
- (C) e^{-1}
- (D) $-e^{-1}$
- (E) $2e^{-2}$

4. If f''(x) - f'(x) - 2f(x) = 0, f'(0) = -2, and f(0) = 2, then f(1) = -2

(A) $e^2 + e^{-1}$ (B) 1 (C) 0 (D) e^2 (E) $2e^{-1}$

<u>Part B</u> Free-Response Questions (80%)

1. Find the sum of the series: $\sum_{n=1}^{\infty} \frac{n}{3^n}$

2. Solve the DE: $y' + 2y = 2e^x$

3. Solve the initial-value problem: $xy' = y + x^2 \sin x$, $y(\pi) = 0$

4. Solve the initial-value problem: 2y'' + 5y' + 3y = 0, y(0) = 3, y'(0) = -4

5. Solve the DE using the method of undetermined coefficients: $y'' - 4y' + 5y = e^{-x}$

6. Let f and g be functions that are differentiable for all real number x and that have the following properties: (i) f'(x) = f(x) - g(x) (ii) g'(x) = g(x) - f(x) (iii) f(0) = 7 (iv) g(0) = 11It is easy to see that f(x) + g(x) = 18 for all x. Use this fact to find f(x) and g(x), show your work.

7. Let
$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(a) Find $f_x(x,y)$ and $f_y(x,y)$ when $(x,y) \neq (0,0)$

(b) Find $f_x(0,0)$ and $f_y(0,0)$ using definition.

(c) Show that $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$

8. Find the linear approximation of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at (3,2,6) and use it to estimate the number $\sqrt{(3.02)^2 + (1.97)^2 + (5.99)^2}$