Let $\vec{F}(x, y, z)$ be a continuous vector field on an oriented surface S with unit normal \vec{n}

$$S: \vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k},$$

 $(u, v) \in D$. We define the surface integral of \vec{F} over S (or the flux integral of \vec{F} over S) as the double integral

$$\iint_{D} \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) \, du \, dv \,,$$

denoted by
$$\iint_{S} \vec{F} \cdot d\vec{S}$$

or
$$\iint_{S} \vec{F} \cdot \vec{n} \, dS.$$