1st Final Exam for Calculus A2-EE

5/21/2012
Class: \qquad Name : \qquad Student ID \# : \qquad

1. Calculate the iterated integral by first reversing the order of integration: $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y$.
2. Calculate the value of the double integral $\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d A$, where D is the region in the first quadrant bounded by the lines $y=0$ and $y=x$ and the circle $x^{2}+y^{2}=2$.
3. Use the transformation: $x=4 u, \quad y=3 v$ to evaluate the area of the region R which is inside the ellipse $9 x^{2}+16 y^{2}=144$ by finding the double integral $\iint_{R} 1 d A$.
4. Evaluate the iterated integral: $\int_{0}^{4} \int_{0}^{\sqrt{4 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
5. Evaluate the integral by making an appropriate change of variables: $\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,2)$, and $(0,1)$.
6. Let D be the solid tetrahedron with vertices $(0,0,0),(0,0,4),(0,4,0)$, and $(2,0,0)$.
(a) Find the volume of the solid tetrahedron D
(b) Find the area of the upper part of the solid tetrahedron D.
7. Find the volume of the solid above the paraboloid $z=x^{2}+y^{2}$ and below the half-cone $z=\sqrt{x^{2}+y^{2}}$.
8. Calculate the value of the triple integral $\iiint_{H^{-}} z^{3} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where H^{-}is the solid hemisphere that lies below the $x y$-plane and has center the origin and radius 1 .
