1st Final Exam for Calculus A2-EE

5/21/2012

Class :	Name :	Student ID # :	
1. Calculate the iterated int	egral by first reversing the order of	of integration: $\int_0^1 \int_{\sqrt{y}}^1 \frac{y e^{x^2}}{x^3} dx dx$	y.

2. Calculate the value of the double integral $\iint_D (x^2 + y^2)^{3/2} dA$, where D is the region in the first quadrant bounded by the lines y = 0 and y = x and the circle $x^2 + y^2 = 2$.

3. Use the transformation: x = 4u, y = 3v to evaluate the area of the region R which is inside the ellipse $9x^2 + 16y^2 = 144$ by finding the double integral $\iint_R 1 \, dA$.

4. Evaluate the iterated integral: $\int_0^4 \int_0^{\sqrt{4x-x^2}} \sqrt{x^2+y^2} \, dy \, dx.$

5. Evaluate the integral by making an appropriate change of variables: $\iint_R \cos\left(\frac{y-x}{y+x}\right) dA$, where R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and (0,1).

- 6. Let D be the solid tetrahedron with vertices (0,0,0), (0,0,4), (0,4,0), and (2,0,0).
 - (a) Find the volume of the solid tetrahedron D

(b) Find the area of the upper part of the solid tetrahedron D.

7. Find the volume of the solid above the paraboloid $z = x^2 + y^2$ and below the half-cone $z = \sqrt{x^2 + y^2}$.

8. Calculate the value of the triple integral $\iiint_{H^-} z^3 \sqrt{x^2 + y^2 + z^2} \, dV$, where H^- is the solid hemisphere that lies below the *xy*-plane and has center the origin and radius 1.