$\diamond \diamond$ Differential Surface Area $\circlearrowright \diamond$

Let $\vec{r}(u, v)$ define a surface, then the differential surface area is

$$
\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v
$$

For a sphere of radius a : $\quad u=\phi, v=\theta$ The differential surface area is

$$
a^{2} \sin \phi d \phi d \theta
$$

For a graph $z=f(x, y): \quad u=x, v=y$ The differential surface area is

$$
\sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
$$

