Key to 1st Midterm Exam for Calculus A2-EE

Part A Multiple-Choice (20\%)

1. If $f^{\prime}(x)=-f(x)$ and $f(1)=1$, then $f(x)=$
(A) $\frac{1}{2} e^{-2 x+2}$
(B) e^{-x-1}
(C) e^{1-x}
(D) e^{-x}
(E) $-e^{x}$

Solution: Write the DE as $f^{\prime}(x)+f(x)=0$. It's linear with constant coefficients. Since its characteristic equation is $r+1=0$, the general solution is $f(x)=C e^{-x}$. But the initial condition $f(1)=1$ gives us that $C e^{-1}=f(1)=1 \Rightarrow C=e$, and hence $f(x)=e e^{-x}=e^{1-x}$, which is (C).
2. If $y^{\prime \prime}=2 y^{\prime}$ and if $y=y^{\prime}=e$ when $x=0$, then when $x=1, y=$
(A) $\frac{e}{2}\left(e^{2}+1\right)$
(B) e
(C) $\frac{e^{3}}{2}$
(D) $\frac{e}{2}$
(E) $\frac{e^{3}-e}{2}$

Solution: Write the DE as $y^{\prime \prime}-2 y^{\prime}=0$. It's linear with constant coefficients. Since its characteristic equation is $r^{2}-2 r=0 \Rightarrow r=0,2$; the general solution is $y=C_{1}+C_{2} e^{2 x}$. Clearly, we have $y^{\prime}=2 C_{2} e^{2 x}$; therefore the initial conditions $y(0)=y^{\prime}(0)=e$ give us that $C_{1}+C_{2}=y(0)=e$ and $2 C_{2}=y^{\prime}(0)=$ $e \Rightarrow C_{2}=e / 2$, and so $C_{1}=e / 2$. Put everything together, we have $y=\frac{e}{2}+\frac{e}{2} e^{2 x} \Rightarrow y(1)=\frac{e}{2}\left(e^{2}+1\right)$, which is (A).
3. If f is the solution of $x f^{\prime}(x)-f(x)=x$ such that $f(-1)=1$, then $f\left(e^{-1}\right)=$
(A) $-2 e^{-1}$
(B) 0
(C) e^{-1}
(D) $-e^{-1}$
(E) $2 e^{-2}$

Solution: Write the DE as $f^{\prime}(x)-\frac{1}{x} f(x)=1$. It's linear 1st order. An integrating factor is

$$
e^{\int-\frac{1}{x} d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
$$

So we have $\left(\frac{1}{x} f(x)\right)^{\prime}=\frac{1}{x} \Rightarrow \frac{1}{x} f(x)=\ln |x|+C \Rightarrow f(x)=x \ln |x|+C x$. But the initial condition $f(-1)=1$ gives us that $-C=f(-1)=1 \Rightarrow C=-1$, and hence $f(x)=x \ln |x|-x \Rightarrow f\left(e^{-1}\right)=$ $e^{-1} \ln \left|e^{-1}\right|-e^{-1}=-2 e^{-1}$, which is (A).
4. If $f^{\prime \prime}(x)-f^{\prime}(x)-2 f(x)=0, f^{\prime}(0)=-2$, and $f(0)=2$, then $f(1)=$
(A) $e^{2}+e^{-1}$
(B) 1
(C) 0
(D) e^{2}
(E) $2 e^{-1}$

Solution: The DE is linear with constant coefficients. Since its characteristic equation is $r^{2}-r-2=$ $0 \Rightarrow r=-1,2$; the general solution is $f(x)=C_{1} e^{-x}+C_{2} e^{2 x}$. Clearly, we have $f^{\prime}(x)=-C_{1} e^{-x}+$ $2 C_{2} e^{2 x}$; therefore the initial conditions $f(0)=2, f^{\prime}(0)=-2$ give us that

$$
C_{1}+C_{2}=f(0)=2 \quad \text { and } \quad-C_{1}+2 C_{2}=f^{\prime}(0)=-2 .
$$

Add them up, we have $3 C_{2}=0 \Rightarrow C_{2}=0$ and hence $C_{1}=2$. So we have $f(x)=2 e^{-x} \Rightarrow f(1)=2 e^{-1}$, which is (E).

1. Find the sum of the series: $\quad \sum_{n=1}^{\infty} \frac{n}{3^{n}}$

Solution: \quad Start from $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}=(1-x)^{-1}, \quad|x|<1$.
Differentiating both sides with respect to x, we have $\sum_{n=0}^{\infty} n x^{n-1}=-(1-x)^{-2}(-1)=\frac{1}{(1-x)^{2}}$; then multiplying both sides by x yields that $\sum_{n=0}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}$.
Set $x=\frac{1}{3}$, we get $\sum_{n=1}^{\infty} \frac{n}{3^{n}}=\frac{1 / 3}{(1-1 / 3)^{2}}=\frac{3}{4}$.
2. Solve the DE: $\quad y^{\prime}+2 y=2 e^{x}$

Solution: The DE is linear and of 1st order. An integrating factor is $e^{\int 2 d x}=e^{2 x}$. Multiplying both sides by $e^{2 x}$ yields that $\left(e^{2 x} y\right)^{\prime}=2 e^{3 x}$, and hence $e^{2 x} y=\frac{2}{3} e^{3 x}+C$.
Therefore the general solution of the DE is $y=\frac{2}{3} e^{x}+C e^{-2 x}$.
3. Solve the initial-value problem: $\quad x y^{\prime}=y+x^{2} \sin x, \quad y(\pi)=0$

Solution: Write the DE as $y^{\prime}-\frac{1}{x} y=x \sin x$.
It's linear and of 1st order. An integrating factor is

$$
e^{\int-\frac{1}{x} d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
$$

So we have $\left(\frac{1}{x} y\right)^{\prime}=\sin x \Rightarrow \frac{1}{x} y=-\cos x+C \Rightarrow y=-x \cos x+C x$.
But the initial condition $y(\pi)=0$ gives us that $-\pi \cos \pi+C \pi=y(\pi)=0 \Rightarrow C=-1$, and hence the solution to the initial-value problem is $y=-x \cos x-x$.
4. Solve the initial-value problem: $2 y^{\prime \prime}+5 y^{\prime}+3 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-4$

Solution: The DE is linear with constant coefficients. Since its characteristic equation is

$$
r^{2}-4 r+5=0 \Rightarrow r=-1,-\frac{3}{2}
$$

the general solution is $y=C_{1} e^{-x}+C_{2} e^{-\frac{3}{2} x}$. Clearly, we have $y^{\prime}=-C_{1} e^{-x}-\frac{3}{2} C_{2} e^{-\frac{3}{2} x}$;
therefore the initial conditions $y(0)=3, \quad y^{\prime}(0)=-4$ give us that

$$
C_{1}+C_{2}=y(0)=3 \quad \text { and } \quad-C_{1}-\frac{3}{2} C_{2}=y^{\prime}(0)=-4
$$

Add them up, we have $-\frac{1}{2} C_{2}=-1 \Rightarrow C_{2}=2$ and hence $C_{1}=1$.
So the solution to the initial-value problem is $e^{-x}+2 e^{-\frac{3}{2} x}$.
5. Solve the DE using the method of undetermined coefficients: $y^{\prime \prime}-4 y^{\prime}+5 y=e^{-x}$

Solution: The DE is linear with constant coefficients. Since its characteristic equation is $2 r^{2}+5 r+3=$ $0 \Rightarrow r=2 \pm \sqrt{-1}$; the complementary function is $y_{c}=C_{1} e^{2 x} \cos x+C_{2} e^{2 x} \sin x$. Clearly, a particular solution is of the form $y_{p}=A e^{-x}$; and therefore $y_{p}^{\prime}=-A e^{-x} \quad y_{p}^{\prime \prime}=A e^{-x} \cdot y_{p}^{\prime \prime}-4 y_{p}^{\prime}+5 y_{p}=e^{-x}$ gives us that

$$
A e^{-x}-4\left(-A e^{-x}\right)+5 A e^{-x}=e^{-x} \Rightarrow 10 A=1 \Rightarrow A=\frac{1}{10}
$$

Conclude that the solution is $y=y_{c}+y_{p}=C_{1} e^{2 x} \cos x+C_{2} e^{2 x} \sin x+\frac{1}{10} e^{-x}$.
6. Let f and g be functions that are differentiable for all real number x and that have the following properties: (i) $f^{\prime}(x)=f(x)-g(x) \quad$ (ii) $g^{\prime}(x)=g(x)-f(x) \quad$ (iii) $f(0)=7 \quad$ (iv) $g(0)=11$ It is easy to see that $f(x)+g(x)=18$ for all x. Use this fact to find $f(x)$ and $g(x)$, show your work.

Solution: Substitute $g(x)$ by $18-f(x)$, property (i) yields $f^{\prime}(x)-2 f(x)=-18$, which is linear and of 1 st order. An integrating factor is $e^{\int-2 d x}=e^{-2 x}$. Multiplying both sides by $e^{-2 x}$ yields that $\left(e^{-2 x} f(x)\right)^{\prime}=-18 e^{-2 x}$, and hence $e^{-2 x} f(x)=9 e^{-2 x}+C$. Therefore $f(x)=9+C e^{2 x}$. By property (iii), we have $9+C=f(0)=7 \Rightarrow C=-2$. Conclude that $f(x)=9-2 e^{2 x}$ and $g(x)=9+2 e^{2 x}$.
7. Let $f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
(a) Find $f_{x}(x, y)$ and $f_{y}(x, y)$ when $(x, y) \neq(0,0)$

Solution:

$$
\begin{aligned}
& f_{x}(x, y)=\frac{\left(3 x^{2} y-y^{3}\right)\left(x^{2}+y^{2}\right)-\left(x^{3} y-x y^{3}\right)(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{y}(x, y)=\frac{\left(x^{3}-3 x y^{2}\right)\left(x^{2}+y^{2}\right)-\left(x^{3} y-x y^{3}\right)(2 y)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$ using definition.

Solution:

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h^{3} \cdot 0-h \cdot 0^{3}}{h^{2}+0^{2}}-0}{h}=0 \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0^{3} \cdot h-0 \cdot h^{3}}{0^{2}+h^{2}}-0}{h}=0
\end{aligned}
$$

(c) Show that $f_{x y}(0,0)=-1$ and $f_{y x}(0,0)=1$

Solution:

8. Find the linear approximation of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(3,2,6)$ and use it to estimate the number $\sqrt{(3.02)^{2}+(1.97)^{2}+(5.99)^{2}}$

Solution: The partial derivatives are

$$
f_{x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \quad f_{y}=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \quad f_{z}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

and therefore the linear approximation of f at $(3,2,6)$ is

$$
L_{f}(3,2,6)=f(3,2,6)+f_{x}(3,2,6) \triangle x+f_{y}(3,2,6) \triangle y+f_{z}(3,2,6) \triangle z=7+\frac{3 \triangle x+2 \triangle y+6 \triangle z}{7}
$$

Now, since $\triangle x=0.02, \quad \triangle y=-0.03, \quad \triangle z=-0.01$, we have

$$
\sqrt{(3.02)^{2}+(1.97)^{2}+(5.99)^{2}} \approx 7+\frac{3 \times 0.02+2(-0.03)+6(-0.01)}{7}=7-\frac{0.06}{7} \approx 6.99
$$

