Midterm Exam for Calculus A2-EE

4/17/2012

Class : _____ Name : _____

Student ID #:

Notice: No scratch on pages 1-3. Scratch is allowed on page 4 only.

Part A Multiple-Choice (10 points each)

- 1. Consider the function $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$ Which of the following statement is TRUE? (A) The limit lim f(x,y) exists
 - (A) The limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exists
 - (B) f is continuous at (0,0)
 - (C) $f_x(0,0) = f_y(0,0) = 0$
 - (D) f is differentiable at (0,0)
 - (E) None of the above
- 2. Consider the function $f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

Which of the following statement is FALSE?

- (A) $\lim_{(x,y)\to(0,0)} f(x,y) = 0$
- (B) f is continuous at (0,0)
- (C) $f_x(0,0) = f_y(0,0) = 0$
- (D) All directional derivatives $D_{\vec{u}}f(0,0)$ exist
- (E) f is differentiable at (0,0)
- 3. Which of the following statement is FALSE for a function $f : \mathbb{R}^2 \to \mathbb{R}$?
 - (A) $f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) f(a,b)}{h}$ (B) $f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$
 - (C) If f has continuous 2nd partial derivatives, then $f_{xy} = f_{yx}$
 - (D) If both $f_x(a, b)$, $f_y(a, b)$ exist then f is differentiable at (a,b)
 - (E) If f has a local maximum at (a, b) and if f is differentiable at (a, b), then $\vec{\nabla} f(a, b) = \vec{0}$
- 4. Which of the following statement is TRUE for a function $f : \mathbb{R}^2 \to \mathbb{R}$?

(A) $\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2} = \lim_{(x,y)\to(1,1)} \frac{1}{x+y} = \frac{1}{2}$

- (B) If (7,11) is a critical point of f and $f_{xy}^2(7,11) > f_{xx}(7,11)f_{yy}(7,11)$, then (7,11) is a saddle point
- (C) There exists a function f on \mathbb{R}^2 having continuous 2nd partial derivatives and $f_x = x + y^2$, $f_y = x y^2$
- (D) If all directional derivatives $D_{\vec{u}}f(a,b)$ exist, then f is differentiable at (a,b)
- (E) If $f(x,y) = \ln y$, then $\vec{\nabla} f(x,y) = \frac{1}{y}$

Part B Fill in the Blanks (10 points each)

1.	The sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ is
2.	The general solution to the DE $y' + 2y = 2e^x$ is
3.	The general solution to the DE $xy' + y = \sqrt{x}$ is
4.	The general solution to the DE $y'' + 8y' + 41y = 0$ is
5.	The general solution to the DE $y'' - 3y' + 2y = \sin x$ is
6.	The directional derivative of $f(x, y) = \sqrt{xy}$ at $P(2, 8)$ in the direction of $Q(5, 4)$ is
7.	The equation of the tangent plane to the surface $z + 1 = xe^y \cos z$
	at the point (1,0,0) is
8.	If $u = x^y$, then $\frac{x}{y} \frac{\partial u}{\partial x} - \frac{1}{\ln x} \frac{\partial u}{\partial y} =$
9.	If $\rho = \sqrt{x^2 + y^2 + z^2}$, then $\frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} + \frac{\partial^2 \rho}{\partial z^2} =$
10.	The value of the iterated integral $\int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} dx dy$ is $$.
11.	The absolute maximum value of $f(x,y) = x^2 + y^2 + x^2y + 4$ on the set $ x \le 1$, $ y \le 1$ is

Part C Free-Response Questions (10 points each)

1. Find the local maximum and minimum values and saddle points of the function

$$f(x,y) = x^3 - 6xy + 8y^3.$$

2. If $f: \mathbb{R}^2 \to \mathbb{R}$ has continuous 2nd partial derivatives, and

 $f(0,1) = 7, \ f_x(0,1) = 11, \ f_y(0,1) = -3, \ f_{xx}(0,1) = 4, \ f_{xy}(0,1) = -5, \ f_{yy}(0,1) = 6.$ If $u(s,t) = f(s^2 - t^2, st)$, find $\frac{\partial^2 u}{\partial s \, \partial t}(1,1)$. 塗鴉處 (Scratch)

塗鴉處 (Scratch)

塗鴉處 (Scratch)

塗鴉處 (Scratch)

塗鴉處 (Scratch)