Class: \qquad Name: \qquad Student ID \# : \qquad
Notice: No scratch on pages 1-3. Scratch is allowed on page 4 only.

Part A Multiple-Choice (10 points each)

1. Consider the function $f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$

Which of the following statement is TRUE?
(A) The limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists
(B) f is continuous at $(0,0)$
(C) $f_{x}(0,0)=f_{y}(0,0)=0$
(D) f is differentiable at $(0,0)$
(E) None of the above
2. Consider the function $f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$

Which of the following statement is FALSE?
(A) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$
(B) f is continuous at $(0,0)$
(C) $f_{x}(0,0)=f_{y}(0,0)=0$
(D) All directional derivatives $D_{\vec{u}} f(0,0)$ exist
(E) f is differentiable at $(0,0)$
3. Which of the following statement is FALSE for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$?
(A) $f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$
(B) $f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}$
(C) If f has continuous 2nd partial derivatives, then $f_{x y}=f_{y x}$
(D) If both $f_{x}(a, b), f_{y}(a, b)$ exist then f is differentiable at (a,b)
(E) If f has a local maximum at (a, b) and if f is differentiable at (a, b), then $\vec{\nabla} f(a, b)=\overrightarrow{0}$
4. Which of the following statement is TRUE for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$?
(A) $\lim _{(x, y) \rightarrow(1,1)} \frac{x-y}{x^{2}-y^{2}}=\lim _{(x, y) \rightarrow(1,1)} \frac{1}{x+y}=\frac{1}{2}$
(B) If $(7,11)$ is a critical point of f and $f_{x y}^{2}(7,11)>f_{x x}(7,11) f_{y y}(7,11)$, then $(7,11)$ is a saddle point
(C) There exists a function f on \mathbb{R}^{2} having continuous 2nd partial derivatives and $f_{x}=x+y^{2}, f_{y}=x-y^{2}$
(D) If all directional derivatives $D_{\vec{u}} f(a, b)$ exist, then f is differentiable at (a, b)
(E) If $f(x, y)=\ln y$, then $\vec{\nabla} f(x, y)=\frac{1}{y}$

Part B Fill in the Blanks (10 points each)

1. The sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ is \square.
\qquad
2. The general solution to the $\mathrm{DE} y^{\prime}+2 y=2 e^{x}$ is \square
\qquad
3. The general solution to the $\mathrm{DE} x y^{\prime}+y=\sqrt{x}$ is \square
\qquad
4. The general solution to the $\mathrm{DE} y^{\prime \prime}+8 y^{\prime}+41 y=0$ is \square
\qquad
5. The general solution to the DE $y^{\prime \prime}-3 y^{\prime}+2 y=\sin x$ is \square
\qquad
6. The directional derivative of $f(x, y)=\sqrt{x y}$ at $P(2,8)$ in the direction of $Q(5,4)$ is \square
\qquad
7. The equation of the tangent plane to the surface $z+1=x e^{y} \cos z$
at the point $(1,0,0)$ is

8. If $u=x^{y}$, then $\frac{x}{y} \frac{\partial u}{\partial x}-\frac{1}{\ln x} \frac{\partial u}{\partial y}=$ \square
9. If $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\frac{\partial^{2} \rho}{\partial x^{2}}+\frac{\partial^{2} \rho}{\partial y^{2}}+\frac{\partial^{2} \rho}{\partial z^{2}}=$ \square
\qquad
10. The value of the iterated integral $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y$ is \square
\qquad
11. The absolute maximum value of $f(x, y)=x^{2}+y^{2}+x^{2} y+4$ on the set $|x| \leq 1, \quad|y| \leq 1$ is \square.

Part C Free-Response Questions (10 points each)

1. Find the local maximum and minimum values and saddle points of the function

$$
f(x, y)=x^{3}-6 x y+8 y^{3} .
$$

2. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous 2 nd partial derivatives, and

$$
f(0,1)=7, f_{x}(0,1)=11, f_{y}(0,1)=-3, f_{x x}(0,1)=4, f_{x y}(0,1)=-5, f_{y y}(0,1)=6 .
$$

If $u(s, t)=f\left(s^{2}-t^{2}, s t\right)$, find $\frac{\partial^{2} u}{\partial s \partial t}(1,1)$.

