2nd Final Exam for Calculus A2-EE

6/11/2012

 Class :
 Name :
 Student ID # :

1. Find the work done by the force field $\mathbf{F}(x, y) = x \mathbf{i} + (y + 2) \mathbf{j}$, in moving an object along an arch of the cycloid $\mathbf{r}(t) = (t - \sin t) \mathbf{i} + (1 - \cos t) \mathbf{j}, \quad 0 \le t \le 2\pi.$

- 2. Consider the vector field $\mathbf{F}(x, y, z) = yz \mathbf{i} + xz \mathbf{j} + (xy + 2z) \mathbf{k}$.
 - (a) Find a function f such that $\mathbf{F} = \nabla f$

(b) and use part (a) to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, along the line segment C from (1, 0, -2) to (4, 6, 3).

- 3. Evaluate the line integral $\oint_C y^3 dx x^3 dy$, along the positively oriented circle $x^2 + y^2 = 4$ by two methods:
 - (a) directly from the definition.

(b) using Green's Theorem.

4. Find the area of the surface with parametric equations $x = uv, y = u + v, z = u - v, u^2 + v^2 \le 1$

- 5. Evaluate the surface integral $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = yz \mathbf{i} + xz \mathbf{j} + xy \mathbf{k}$ and S is the part of the paraboloid $z = 9 x^2 y^2$ that lies above the plane z = 5, oriented upward
 - (a) directly from the definition;

(b) using Stokes' Theorem.

- 6. Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + x \mathbf{j} + z \mathbf{k}$ and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4
 - (a) directly from the definition;

(b) using Divergence Theorem.