2nd Final Exam for Calculus A2-EE

Class : \qquad Name: \qquad Student ID \# : \qquad

1. Find the work done by the force field $\mathbf{F}(x, y)=x \mathbf{i}+(y+2) \mathbf{j}$, in moving an object along an arch of the cycloid $\quad \mathbf{r}(t)=(t-\sin t) \mathbf{i}+(1-\cos t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi$.
2. Consider the vector field $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}$.
(a) Find a function f such that $\mathbf{F}=\nabla f$
(b) and use part (a) to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, along the line segment C from $(1,0,-2)$ to $(4,6,3)$.
3. Evaluate the line integral $\oint_{C} y^{3} d x-x^{3} d y$, along the positively oriented circle $x^{2}+y^{2}=4$ by two methods:
(a) directly from the definition.
(b) using Green's Theorem.
4. Find the area of the surface with parametric equations $x=u v, y=u+v, z=u-v, u^{2}+v^{2} \leq 1$
5. Evaluate the surface integral $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$ and S is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=5$, oriented upward
(a) directly from the definition;
(b) using Stokes' Theorem.
6. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=y^{2} \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and S is the surface of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$
(a) directly from the definition;
(b) using Divergence Theorem.
