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Abstract

A standard formula (1) leads to a proof of HT90, but requires prov-
ing the existence of θ such that α 6= 0, so that β = α/σ(α).

We instead impose the condition (M), that taking θ = 1 makes
α = 0. Taking n = 3, we recover Shanks’s simplest cubic fields. The
“simplest” number fields of degrees 3, 4, 5, and 6, Washington’s cyclic
quartic fields, and a certain family of totally real cyclic extensions of
Q(cot(π/4m)) also have primitive elements which are units satisfying
this condition.

Further investigation of (M) for n = 4 leads to an elementary al-
gebraic construction of a 2-parameter family of octic polynomials with
“generic” Galois group 8T11. Imposing an additional algebraic condition
on these octics produces a new family of cyclic quartic extensions. This
family includes the “simplest” quartic fields and Washington’s cyclic
quartic fields as special cases.

We obtain more detailed results on our octics when the parameters
are algebraic integers in a number field. In particular, we identify cer-
tain sets of special units, including exceptional sequences of 3 units, and
give some of their properties.

1 Introduction

Hilbert’s Theorem 90 (See, e.g. [16]) characterizes elements β of norm 1 in a
cyclic extension L/k of degree n with Galois group G = 〈σ〉; one has

NL/k(β) = 1 if, and only if, β = α/σ(α) for someα ∈ L. (HT90)

“If” is obvious. The usual proof of “only if ” uses the formula

α = θ + σ(θ)β + σ2(θ)βσ(β) + . . .+ σn−1(θ)βσ(β) · · ·σn−2(β). (1)

If NL/k(β) = 1, this formula makes α/σ(α) = β a formal identity. One has
to show that α 6= 0 for some θ ∈ L to complete the proof.

In [6], Chapter XI, Theorem 2 there is a constructive proof of (HT90)
for n = 2. It actually exhibits a nonzero α: Substituting θ = 1 gives the
simplified formula

α = 1 + β.
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This gives a nonzero α unless β = −1, and this case is handled separately.
We note that θ = 1 is the only nonzero value guaranteed to be in every

field. We make this choice for arbitrary n. We assume L/k is a finite Galois
extension with Galois group G, and σ ∈ G is of order n. We impose the
condition on r ∈ L that

1 + r + rσ(r) + . . .+ rσ(r) · · ·σn−2(r) = 0. (M)

We call (M) the Murphy condition. As the condition is stated, L/k need
not be cyclic. This is simply because for all we know, Lσ could be a proper
extension of k. This in fact happens in §4, even with the additional conditions
in Eq. (1.3).

The following formal properties are immediate:

Proposition 1.1. Let k, L, σ, r and n satisfy (M). Then

(a) (M) holds if r is replaced by σi(r), 1 ≤ i ≤ n− 1.

(b) rσ(r) · · ·σn−1(r) = 1.

Proof. For (a), apply σi to (M). For (b), apply σ to (M), multiply by r, and
subtract (M).

If k(r)/k is cyclic of degree n and r is an algebraic integer satisfying
(M), k(r) has elements z with an unusual property (see the end of §2). By
Prop. 1.1(b), such r are units, which we call Murphy’s units.

We take as a simple example the case n = 3. Then (M) becomes

1 + r + rσ(r) = 0. (M3)

Solving for σ(r) and repeatedly applying σ, treating it as a field automor-
phism, we obtain the expressions

σ(r) =
−r − 1
r

, σ2(r) =
−1
r + 1

, σ3(r) = r. (C3)

Setting r + σ(r) + σ2(r) = A, A ∈ k (Tr3)

and clearing fractions, we find that any r for which (M3) and (Tr3) hold is a
zero of

p(x) = x3 −Ax2 − (A+ 3)x− 1, for some A ∈ k. (P3)

By Proposition 2.3, every cyclic cubic field extension has a defining polynomial
of this form. However, if we take k = Q and A ∈ Z, p(x) is irreducible
(mod 2), so this restriction on the parameter produces a family of cyclic cubic
fields in which 2 remains inert, which is clearly not true of all cyclic cubic fields.
In [33], D. Shanks called the fields defined by (P3) with A ∈ Z the “simplest”
cubic fields. Certain families of cyclic number fields of degrees 4, 5, and 6 have
subsequently been dubbed “simplest.” They, too, have defining polynomials
whose zeroes are units satisfying (M). We have the following result:
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Proposition 1.2. Let k be a field, t ∈ k. In each of the following cases, σ(x)
(mod P (x)) makes (M) a formal identity, with n equal to the degree of P (x).

a) P (x) = x3 − tx2 − (t+ 3)x− 1, σ(x) = (−x− 1)/x;

b) P (x) = x4 − tx3 − 6x2 + tx+ 1, σ(x) = (−x− 1)/(x− 1);

c) P (x) = x4 + (t2 + 2t+ 4)x3 + (t3 + 3t2 + 4t+ 6)x2

+ (t3 + t2 + 2t+ 4)x+ 1,

σ(x) = (−x3 + (−t2 − 2t− 4)x2 + (−t3 − 3t2 − 4t− 5)x

− t3 − t2 − 2t− 2)/t;

d) P (x) = x5 − t2x4 − (2t3 + 6t2 + 10t+ 10)x3

− (t4 + 5t3 + 11t2 + 15t+ 5)x2 + (t3 + 4t2 + 10t+ 10)x− 1,

σ(x) = ((−t− 1)x4 + (t3 + 2t2 + 3t+ 3)x3

+ (t4 + 4t3 + 9t2 + 14t+ 8)x2 + (−t4 − 7t3 − 19t2 − 29t− 19)x

+ (−t4 − 6t3 − 16t2 − 20t− 9))/(t3 + 5t2 + 10t+ 7); and

e) P (x) = x6 − 2tx5 − (5t+ 15)x4 − 20x3 + 5tx2 + (2t+ 6)x+ 1,
σ(x) = (−2x− 1)/(x− 1).

Proof. For (a), (b), and (e), the fact that (M) becomes a formal identity is
easily checked by hand. The others can be checked with symbolic algebra
software. The author (with Phil Carmody’s guidance) used Pari-GP.

Remarks. The term “formal identity” means that substituting σ(x) and its
compositional powers (mod P (x)) into (M) gives a quotient of polynomials
in which P (x) divides the numerator. For the σ(x) which are independent of
t in (a), (b), and (e), one can make the stronger statement that (M) actually
evaluates to 0 at any x for which all the terms in the sum are defined.

Shanks’s 1974 paper [33] seems to be the first to refer to certain families of
number fields as “simplest.” The polynomials in (a) had previously appeared
in H. Cohn’s 1956 paper [5]. They yield explicit systems of independent
units, a property which Shanks sought. When this system is fundamental,
the regulator is very small. A great deal of research has been done on these
cubics.

In [40], L.C. Washington extended Uchida’s work in [38], to force class
numbers divisible by n in the “simplest” cubic fields, and used elliptic curves
to describe the 2-Sylow subgroup of their class groups, and to exhibit explicit
quartic extensions of these fields.

In [28], Patrick Morton gave a parameterization of cyclic cubic fields based
on automorphism polynomials, and obtained Shanks’s simplest cubics by
change of parameter. Robin Chapman simplified Morton’s proofs in [2].
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E. Thomas proved in [37] that if r is a zero of a Shanks’s simplest cubic,
then 〈r, r + 1〉 is a system of fundamental units for the order Z[r].

The property that r and r+ 1 are both units makes r, r+ 1 an exceptional
sequence in the sense of Lenstra [20]: a finite sequence r1, . . . , rk of units, the
difference of any two of which is also a unit (and r2−r1 = 1) . This generalizes
Nagell’s definition of exceptional units in [30]. D. Buell and V. Ennola studied
the only other family of totally real cubic fields with exceptional units in [1].

The polynomials in (b) were constructed in [9], while those in (e) were
introduced (in a slightly different form) in [8]. The quintics in (d) are of the
form −f(−x) where f(x) is one of the quintics introduced by E. Lehmer in
[19]. She observed in this paper that the zeroes of the cubic polynomials in [33]
and the quartic and sextic polynomials in [9] and [8] are, in the case of a prime
conductor, integer translates of Gaussian periods, and obtained quintic units
with the same property. In [32] (Appendix), R. Schoof and L.C. Washington
proved that the integer-translates property characterizes the “simplest” fields
of degrees 2, 3, and 4 with prime conductor. In [17], A. Lazarus applied the
term “simplest” to these fields of degrees 2 to 6, as well as to a family of octic
fields constructed by Y.Y. Shen in [34].

In Proposition 4.17 we show that for t ∈ k−{0,−2}, the polynomial P (x)
in (c), which falls out from (M) and the conditions in Eq. (1.3) with n = 4,
defines the same extension as the polynomial

ft(x) = x4 − t2x3 − (t3 + 2t2 + 4t+ 2)x2 − t2x+ 1 (1.1)

which L.C. Washington constructed in [41]. In [29], Patrick Morton proved
the equivalence of these fields with cyclic quartic fields whose Galois groups
have a quadratic (rather than cubic) generating automorphism polynomial.

In [33] Shanks also proposed “simplest” quadratic fields defined by the
polynomials x2 = ax+ 1, a ∈ Z. These quadratic fields have a special signifi-
cance with respect to (M). For if v2 − tv − 1 = 0, t ∈ Z− {0,−2}, the cyclic
quartic field L defined by ft(x) contains v, and if G(L/Q) = 〈σ〉, we have

1 + v + vσ(v) + vσ(v)σ2(v) = 1 + v + (−1) + (−1)v = 0. (1.2)

That is, quadratic units of norm −1 (unlike those of norm +1), satisfy (M)
with n = 4 when embedded in a cyclic quartic field (such as a Washington’s
cyclic quartic field). We give a generalization of this phenomenon based on
(M), in the remarks following Proposition 2.3.

The “simplest” number fields of degrees 3, 4, and 6 were studied further
by G. Lettl, A. Pethő, and P. Voutier in [21] and [22]. A. Lazarus studied the
unit groups and class numbers of the “simplest” quartic fields in [17].

L. C. Washington used coverings of modular curves in [41] to construct his
family of cyclic quartic fields. He observed that the “simplest” fields of degree
2, 3, 4, 5, and 6 can be constructed by the same method. (See [7] with regard
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to Emma Lehmer’s quintics.) He further observed that in all these cases, the
coverings have genus 1. In contrast, the cyclic sextic fields constructed by O.
Lecacheux in [18], use a covering of genus 2.

In [26], S. Louboutin obtained explicit formulas for powers of Gaussian
sums attached to the “simplest” fields of degrees 2 to 6, and used them to
give efficient computations of their class numbers.

In §3, we construct a 1-parameter family of polynomials of degree n in
Q(cot(π/n))[x], whose zeroes are permuted cyclically by a linear fractional
transformation λ of compositional order n for each n > 1, generalizing a
construction in [34]. When n = 4m, σ = λ−1 makes (M) a formal identity.

For n > 3 we cannot simply “solve” (M) for σ as we did in (C3); but we
would like to obtain as general an algebraic map of compositional order n as
possible, that makes (M) a formal identity. So, we impose purely algebraic
conditions which always hold when k(r)/k is cyclic of degree n with G = 〈σ〉:

n
d−1∑
i=0

σi

d−1∏
j=0

σ
jn
d (r)

 ∈ k, for each divisor d of n. (1.3)

These conditions do not depend on the choice of cyclic generator for 〈σ〉 but
(as mentioned after Proposition 1.2), do admit extensions in which Lσ is a
proper extension of k.

In §4.1, using only (M) for n = 4, the condition that the map σ fixes
the ground field elementwise, the conditions (1.3), and elementary algebra,
we obtain a linear fractional map (C4) for σ, and a 2-parameter family of
defining octics T (m,A, x), m,A ∈ k, with “generic” Galois group G ∼= 8T11

(see below). We let L/k denote the splitting field of T (m,A, x).
L/k contains (§4.4) the elementary Abelian extension E = k(s, w, y)/k,

where s2 = m2 − 4, w2 = (m+ 2 +A)2 − 4(m− 2), and y2 = A2 − 4(m− 2).
When [E : k] = 8, G ∼= 8T11, and E contains 7 quadratic extensions of k. In
Theorem 4.14 we describe the subgroups of 8T11 fixing each of these.

The description of the Galois group is greatly facilitated by the fact that
the related octics T (m,A, x) and T (m,−m−2−A, x) have the same splitting
field over k (Theorem 4.13). When [L : k] = 8, at least one of these octics is
a defining polynomial for the splitting field.

The cyclic quartics for which our map σ makes (M) a formal identity with
n = 4, occur in pairs. They are the quartic factors of T (m,A, x) in k(sw)[x], so
typically define cyclic quartic extensions of k(sw), not of k. But when sw ∈ k,
they are in k[x], and we call them Murphy’s twins. They “generically” define
distinct cyclic quartic extensions of k, both containing k(s). The “simplest”
quartic fields and Washington’s cyclic quartic fields are “degenerate” cases
(with k = Q) for which s = 0 and w = 0, respectively. In these cases the
“twins” are identical. We construct other “Murphy’s twins” extensions of Q
in §6.3 using standard results on norms from real quadratic fields.
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By “collapsing” other quadratic extensions of k in E, we construct families
of polynomials defining normal octic extensions with G ∼= D8(8), Q8, and
C4 × C2, and quartics with G ∼= D4 and V4.

The “generic” Galois group 8T11 is an order-16 transitive subgroup of
A8; 8T11

∼= GAP small group 〈16, 13〉. It has one maximal subgroup ∼= Q8

(quaternion group), three ∼= D4, and three ∼= C4 × C2. It has presentation

〈a, b, c〉 : a4 = b2 = c2 = 1, ab = ba, ac = ca, (bc)2 = a2.

It is also known as the “almost extraspecial group of order 16.” Derek Holt
([14]) described almost extraspecial p-groups as central products. A central
product is an “amalgamated product” (see [10]), in which the subgroups being
identified are in the centers of the factors. In this particular case,

8T11
∼= C4 ∨D4

∼= C4 ∨Q8.

When k = Q and m,A ∈ Z, there are (§6.5) explicit sets of 3 independent
units. If T (m,A, x) defines one or more number fields whose units groups
have rank 3, these can produce rather small regulators.

Our octics produce (Propositions 5.3 and 5.4) some unusual sets of units
and associates. Specifically (Proposition 5.3(b)), if m,A ∈ Ok for a number
field k, and m−2 ∈ O×k , then each zero of T (m,A, x) is part of an exceptional
sequence of three units; that is, three units, the difference of any two of which is
also a unit. In particular, T (1, A, x) and T (3, A, x), A ∈ Z, are one-parameter
families in Q[x] whose zeroes have this property. An infinite subfamily of
T (3, A, x) gives (Eqs. (6.3a) - (6.4b)) “Murphy’s twins” cyclic quartic fields
with exceptional sequences of three units. We also obtain (Eq. (6.5)) a unit
index formula which may be of interest.

The terms “exceptional units,” “exceptional sequences,” and “cliques” (of
units) arose as follows: In [30], Nagell called either of two units whose sum is 1,
exceptional units. In [20], Lenstra used finite sequences of algebraic integers,
the difference of any two of which is a unit, to construct Euclidean fields. He
observed that by applying an appropriate affine transformation, the first two
terms of the sequence become 0 and 1, and any further terms become excep-
tional units. Thus, Lenstra’s sets generalize the concept of exceptional units.
In [24], A. Leutbecher and J. Martinet called them exceptional sequences. In
[23], Leutbecher entitled Section 1 “The graph of exceptional units.” This
applied an idea of Győry, that defining two elements of a commutative ring R
as being “connected” when their difference is a unit, induces a graph struc-
ture on R (see, e.g. [25], reference [G3]). Leutbecher and G. Niklasch used
the graph-theoretic term “cliques” in this context in [25].
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2 Basic formal properties

Proposition 1.1 gave some very simple formal properties implied by (M). We
give several more. The first of these applies to non-Abelian extensions.

Proposition 2.1. Let L/k be a finite Galois extension with Galois group G,
and assume σ ∈ G, r,and n satisfy (M). If γ ∈ CG(〈σ〉), then (M) holds for
γ(r).

Proof. Since γσ = σγ, we have γ(σi(r)) = σi(γ(r)) for all i.

Next, (M) does not depend on the choice of generator for 〈σ〉.

Proposition 2.2. Assume k, L, r, σ, and n > 2 satisfy (M). If
1 ≤ k < n, (k, n) = 1, η = σk, and yk = rσ(r) · · ·σk−1(r), then

1 + yk + ykη(yk) + . . .+ ykη(yk) · · · ηn−2(yk) = 0.

Proof. The proof is left as an exercise.

The yk are zeroes of the degree-n polynomials

fk(x) =
n∏
i=1

(x− σi(yk)). (2.1)

We thus obtain a set of ϕ(n) polynomials. Mutually inverse generators of 〈σ〉
give polynomials with mutually reciprocal zeroes.

Examples. Applying Eq. (2.1) to f1(x) = P (x) and σ as in Proposition
1.2(d), we obtain the alternate defining polynomial

f2(x) = x5 + (t3 + 3t2 + 5t+ 5)x4 − (t4 + 3t3 + 7t2 + 5t+ 5)x3

− (t4 + 5t3 + 17t2 + 25t+ 25)x2 − (2t2 + 5t+ 10)x− 1.

Eq. (2.1) gives f2(x), f3(x) = −x5f2(1/x), and f4(x) = −x5f1(1/x) in addi-
tion to f1(x).

The zeroes of the octic polynomials studied by Y.Y. Shen in [34],

P (a, x) = x8 − ax7 − 28x6 + 7ax5 + 70x4 − 7ax3 − 28x2 + ax+ 1, a ∈ Z,

are permuted cyclically by the compositional powers of the algebraic map

σ : x 7→ (−ξx− 1)/(x− ξ), taking ξ (mod ξ2 − 2ξ − 1).

It may be verified directly that (M) with n = 8 is a formal identity for the
compositional powers of this algebraic map. Shen showed that P (a, x) defines
cyclic octic fields when a2 +64 ∈ 2Z2, and investigated the properties of these
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fields. For such a, P (a, x) is irreducible in Q[x] but not in Q(ξ)[x]. In this
case, the automorphism defined by σ maps ξ to −1/ξ, so its compositional
powers occur in a different order than those of the algebraic map. If we assume
that k = Q(ξ), a ∈ Ok, and P (a, x) is irreducible in k[x], then it defines a
cyclic octic extension of k with Galois group 〈σ〉, and its zeroes are units
which satisfy (M) with n = 8. The coefficients of f3(x) and f5(x) as in Eq.
(2.1) are not formally in Z[a]; for instance, the coefficient of x5 in f3(x) is
(12a2 + 768)ξ + a3 − 12a2 + 57a− 768.

From Proposition 1.1(b) and HT90, we see that if L/k is cyclic of degree
n with Galois group 〈σ〉, any r for which (M) holds is of the form α/σ(α),
α ∈ L. If α = 1/z, we have r = σ(z)/z. Substituting this expression into
(M), the products in each term telescope, giving

(z + σ(z) + . . .+ σn−1(z))/z = 0.

The numerator is TrL/k(z). Thus, in a cyclic extension, an element which
satisfies (M) is of the form σ(z)/z where z is in the kernel of the trace. For
cyclic extensions of degree n > 2, primitive elements of this form always exist.

Proposition 2.3. Let L/k be a cyclic extension of degree n with G = 〈σ〉. If
n > 2, there is r ∈ L with L = k(r) for which (M) holds.

Proof. The kernel of the trace from L to k is a k-vector subspace V of L of
dimension n − 1. The distinct elements σ(z)/z, z ∈ V − {0}, correspond in
an obvious way to the 1-dimensional k-subspaces of V .

If k is a finite field with q elements, the number of such subspaces is

(qn−1 − 1)/(q − 1) = 1 + q + . . .+ qn−2.

The formula (see, for example, [3], Exercise 13 for Chapter 3) for the number
of primitive elements in a degree-n extension of a finite field shows that the
number of nonzero nonprimitive elements in L is less than

1 + q + . . .+ qn/`,

where ` is the least prime factor of n. If n > 2, the number of distinct elements
σ(z)/z, z ∈ V − {0}, is thus too large for them all to be non-primitive.

Now suppose k is infinite and n > 2. Let d | n, d > 1, and suppose z ∈ V
with σ(z)/z = w ∈ F , where F is the intermediate field with L/F of degree
d. Then NF/k(w) = σn/d(z)/z = W ; NL/k(W ) = Wn = 1; there are at most
n such W . The distinct values of σn/d(z)/z correspond to one-dimensional
F -vector subspaces of L; these are n/d-dimensional k-vector spaces. Now
n/d < n − 1 for d > 1 and n > 2. Thus, the values r = σ(z)/z, z ∈ V , for
which k(r) 6= L, correspond to the 1-dimensional subspaces of a finite union of
proper k-subspaces of V . It is well-known that when k is infinite, no k-vector
space is a finite union of proper subspaces, and the result follows.
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Remarks. If r = σ(z)/z satisfies (M), then in Proposition 2.2, yk = σk(z)/z.
When the ground field k contains an mth root of unity ζ 6= 1, F = k(r)

is a cyclic extension of degree d, and NF/k(r) = ζ, then embedding F in a
cyclic extension of degree md over k forces r to satisfy (M) with n = md, as
occurs in Eq. (1.2) with m = 2 and ζ = −1.

If k is a number field and r is a “Murphy’s unit,” we may take z so its
σ-conjugates are associate algebraic integers in the kernel of the trace. Among
cyclic cubic extensions of Q, only Shanks’s simplest cubic fields possess such
z. If P (r) = 0 in Prop. 1.2(a), r = σ(z)/z for z = 2r2 − (2t + 1)r − t − 4.
Noting that (t2 + 3t+ 9)2 = disc(x3 − tx2 − (t+ 3)x− 1), we have

z3 − (t2 + 3t+ 9)z + t2 + 3t+ 9 = 0.

3 Shen’s polynomials

In [34], Y.Y. Shen constructed polynomials of 2-power degree, generalizing the
1-parameter family of defining polynomials for the octic fields he investigated.
His construction used linear fractional transformations of the form

λ : x 7→ ξx− 1
x+ ξ

defined by the matrix
(
ξ −1
1 ξ

)
, ξ = cot(π/2k). (3.1)

The results in this section are thus very similar to those in [31], but our re-
sults are less general. We restrict our parameter to the complex field C. This
allows us to “cheat” by invoking a periodic transcendental meromorphic func-
tion (the cotangent), and to exploit the fact that the linear transformation
in Eq. (3.1) corresponds to adding a division point to the argument of this
function. Our approach also differs in that we begin with well-known poly-
nomials, rather than a linear transformation. We later restrict our parameter
further to algebraic integers in K = Q(cot(π/n)). This produces polynomials
of degree n in K[x] whose irreducible factors all have the same degree d | n.
If d is a proper divisor of n, the “rescaled” polynomial of degree n/d splits
into linear factors in K[x] (Prop. 3.4).

Here, we generalize Shen’s construction to polynomials of degree n for all
n > 1. We take

Qn(x) = <((x+ i)n) and Vn(x) = =((x+ i)n). (3.2)

Clearly

Qn(x) =
∑

0≤2k≤n

(−1)k
(
n

2k

)
xn−2k , Vn(x) =

∑
0≤2k<n

(−1)k
(

n

2k + 1

)
xn−2k−1
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so Qn(x) is monic of degree n, and Vn(x) is of degree n − 1, with leading
coefficient n. There is also the very useful formula

Qn(cot(θ))/Vn(cot(θ)) = cot(nθ) for all n ∈ Z+. (3.3)

The gcd of the coefficients of Vn(x) is 2v2(n), where n/2v2(n) is an odd integer.
The proof is left as an exercise.

Definition 3.1. With Qn(x) and Vn(x) as in Eq. (3.2), and n ∈ Z+, set

Pn(a, x) = Qn(x)− a

2v2(n)
Vn(x). (3.4)

Then Pn(a, x) is monic of degree n. For 0 ≤ k ≤ n, the coefficient of xn−k

is in Z if k is even, and in Z · a if k is odd.
Clearly V2n(x) = 2Qn(x)Vn(x), so V2t(x) = 2tQ1(x)Q2(x) · · ·Q2t−1(x) for

t ∈ Z+ by induction. Thus, when n = 2t, Pn(a, x) coincides with the degree-2t

polynomial constructed in [34].
The following properties are easily obtained:

Proposition 3.1. Let n ∈ Z+ and a ∈ C.

(a) If a 6= ±2v2(n)i, Pn(a, x) has n distinct zeroes x = cot(θ) for which
cot(nθ) = a/2v2(n). The zeroes are real if a is real. If cot(θ1) is one of
them, all are given by cot(θ1 + kπ/n), 0 ≤ k ≤ n− 1.

(b) The discriminant of Pn(a, x) is n(2n−2−2v2(n)n)n−1(a2 + 4v2(n))n−1.

(c) If Pn(a, cot(θ)) = 0, then Qk(cot(θ))−cot(kθ)Vk(cot(θ)) = 0 for k ∈ Z+.

(d) If Pn(a, cot(θ)) = 0 and D | n, Pn/D(a/2v2(D), x) = 0 for

x = cot(Dθ + kDπ/n), 0 ≤ k ≤ n/D − 1.

Proof. For (a), use Eq. (3.3). Except for ±i, cot(nθ) assumes all complex
values, including all real values for θ ∈ (0, π/n), and is periodic with period
π/n.

For (b), disc(Pn(a, x)) = f(a) ∈ Z[a]. By construction, Pn(a, x) = (x∓ i)n
when a = ±2v2(n)i. By (a), f(a) has no linear factors in C[a] other than
a± 2v2(n)i, so is a constant multiple of (a2 + 4v2(n))n−1. Taking a = 0, we see
the constant is the discriminant of Qn(x) divided by 4(n−1)v2(n). The identity
Q′n(x) = nQn−1(x) aids in evaluating the discriminant of Qn(x).

Finally, (c) and (d) follow easily from Eq. (3.3).
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We recover the following well-known identities by comparing the coefficient
of xn−1 and the constant term of Pn(a, x) with the formula cot(nθ) = a/2v2(n)

in Proposition 3.1(a). They are valid if nθ is not an integer multiple of π.

If n ∈ Z+, then
n−1∑
k=0

cot(θ + kπ/n) = n cot(nθ). (3.5a)

If n ∈ Z+ is odd, then
n−1∏
k=0

cot(θ + kπ/n) = (−1)(n−1)/2 cot(nθ). (3.5b)

Let n > 1, x = cot(θ) and ξ = cot(π/n). Then the map

T : cot(θ) 7→ cot(θ + π/n) becomes λ : x 7→ ξx− 1
x+ ξ

. (3.6)

Since T has compositional order n, so does λ. Using Eq. (3.3) and Proposition
3.1(a), we have

n−1∑
k=0

λ(k)(x) = nQn(x)/Vn(x), (3.7)

where λ(k) is the kth compositional power of λ. Also,

Corollary 3.2. Let n ∈ Z, n > 1, and a ∈ C. If ξ = cot(π/n), the zeroes of
Pn(a, x) are permuted cyclically by the linear fractional map λ in Eq. (3.6).

Proof. If a 6= ±2v2(n)i, this just restates Proposition 3.1(a). If a = ±2v2(n)i,
the n-fold zero ±i of Pn(a, x) = (x∓ i)n is fixed by λ.

Now, let n ∈ Z, n > 1 and K = Q(cot(π/n)). It is easily shown that
K = Q(2 cos(2π/N)) where N = lcm(n, 4). We have the following result:

Theorem 3.3. Let n ∈ Z, n > 1, K = Q(cot(π/n)), and α ∈ OK .

(a) The zeroes of Pn(α, x) are algebraic integers (units, if n is even).

(b) Pn(α, x) determines a totally real extension L of K.

(c) There is a divisor d of n such that, if f(x) is any irreducible factor of
Pn(α, x) in K[x], f(x) has degree d.

(d) If f(x) and d | n are as in (c), then G(L/K) = 〈σ〉, where the restriction
of σ to the zeroes of f(x) is given by λ(n/d), λ as in Eq. (3.6).
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Proof. For (a), Pn(α, x) is a monic polynomial in OK [x] by Definition 3.1. If
n is even, the constant term is (−1)n/2.

For (b), the zeroes of Pn(α, x) are all real by part (a) of Proposition
3.1. Since K is totally real, the zeroes of Pn(α′, x) are also all real, for each
conjugate α′ of α.

For (c), let Pn(α, r) = 0. By Corollary 3.2, the rest of the zeroes are given
by λ(k)(r), 1 ≤ k ≤ n − 1, λ as in Eq. (3.6). Now λ is defined by a matrix
in PGL2(K), so all zeroes of Pn(α, x) determine the same extension of K.
Thus, its irreducible factors in K[x] all have the same degree.

For (d), let f(x) be a monic irreducible factor of Pn(α, x) in K[x], and d | n
its degree. Let fk(x) = (x + cot(kπ/n))df(λ(k)(x)) “made monic” (divided
by its lead coefficient).

If fj+k(x) = fj(x), clearly λ(k) has compositional order d at most. So
f(x) = f0(x), f1(x), . . ., fn/d−1(x) are all distinct, and fn/d(x) = f(x). The
rest is now self-evident.

The integer d in Theorem 3.3(c) has some additional properties:

Proposition 3.4. Let n, α, and Pn(α, x) be as in Theorem 3.3, with d as in
Theorem 3.3(c).

(a) If Pn(α, cot(θ)) = 0, then cot(dθ) ∈ K.

(b) Pn/d(α/2v2(d), x) splits into linear factors in K[x].

(c) d is the least positive integer for which (a) and (b) hold.

Proof. Let f(x) be the minimum polynomial for cot(θ) in K[x]. By Theorem
3.3(d), the zeroes of f(x) are cot(θ + kπ/d), 0 ≤ k < d. By the identity
in Eq. (3.5a), the sum of these zeroes is d cot(dθ), proving (a). Since f(x)
is irreducible in K[x], the formula in Prop. 3.1(c) shows that d is the least
positive integer with this property, and exhibits f(x). By the formula in Prop.
3.1(d), the zeroes of Pn/d(α/2v2(d), x) are cot(dθ+kπd/n), 0 ≤ k < n/d. These
are all in K because the cotangents of both summands of the argument are
in K.

When 4 | n, 〈λ〉 has generators which make (M) a formal identity.

Proposition 3.5. Let λ be as in Eq. (3.6), m ∈ Z+, and n = 4m. If

S(x) = 1 + x+ xλ−1(x) + xλ−1(x)λ−2(x) + . . .+ xλ−1(x) · · ·λ−(4m−2)(x),

then S(x) ≡ 0; that is, if σk(r) = λ−k(r), (M) becomes a formal identity.
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Proof. S(x) is a rational function, which clearly has a partial fraction decom-
position of the form

S(x) = A+Bx+
4m−2∑
k=1

ck
(x− cot(kπ/4m))

,

where A,B, ck ∈ Q(cot(π/4m)). Using λ2m(x) = −1/x, we find

B =
2m−1∑
k=0

k∏
j=1

(− cot(jπ/4m)).

Since cot(π/2− θ) = 1/ cot(θ), the terms of index k and 2m− 1− k are equal
and opposite. Thus B = 0, so S(x) is bounded as x→∞.

Now λ−(4m−1)(x) = λ(x). Using λj+2m(x) = −1/λj(x), we find that
λ(x)S(x) = S(λ(x)). Letting x → ∞, we see S(λ(x)) remains bounded as
λ(x) → cot(π/4m), so c1 = 0. Then, λ(k)(x)S(λk−1(x)) = S(λ(k)(x)), giving
ck = 0 for 1 ≤ k ≤ 4m− 2. Thus, S(x) = A, a constant. Substituting x = i,
which is fixed by λ, we find S(i) = 0.

Next, we evaluate the sums in Eq. (1.3) with σ = λ. If d (and hence n) is
even, the factors in each term occur in negative-reciprocal pairs, so the sum
is (−1)d/2(n/d). If d is odd, we use Eq. (3.5b) to evaluate each term, then
Eq. (3.5a) to add them; the result is (−1)(d−1)/2na/(d · 2v2(n)).

Let n = 4m, a ∈ Z. Since cot(π/n) ∈ Q(r, λ(r)) if Pn(a, r) = 0, the
splitting field of Pn(a, x) over Q has degree divisible by ϕ(2m). If Q(r)/Q is
normal of degree n, then ϕ(2m) | 4m. The degree d of the irreducible factors
of Pn(a, x) in K[x] divides 4m/ϕ(2m). If n = 2t, t ≥ 4, then d | 4, and
it can be shown using Prop. 3.4(b), that Q(r)/Q is a normal extension of
degree n = 2t only if a = ±n and Q(r) = Q(2 cos(π/4n)), or if n = 16 and
a = ±16 · 239.

4 The condition (M) with n = 4

Assuming that (M) and the conditions in Eq. (1.3) hold, and that the map σ
fixes the ground field k elementwise, we only need elementary algebra, treating
σ as a field isomorphism as needed, to produce a complete description of σ as
an algebraic map, in terms of two parameters m and A in k.

4.1 The formal construction

When n = 4, (M) becomes

1 + r + rσ(r) + rσ(r)σ2(r) = 0. (M4)
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The condition of Eq. (1.3) with d = 2 is

rσ2(r) + σ(r)σ3(r) = m ∈ k.

By Proposition 1.1, rσ(r)σ2(r)σ3(r) = 1, so taking rσ2(r) = u, we have

σ(u) = u−1, where (4.1a)

u2 −mu+ 1 = 0, m ∈ k. (4.1b)

Substituting u for rσ2(r) in (M4), solving for σ(r), repeatedly applying σ,
and keeping in mind Eq. (4.1a), we obtain the expressions

σ(r) =
−r − 1
r + u

, σ2(r) =
u

r
, σ3(r) =

−u−1r − 1
r + 1

, σ4(r) = r. (C4)

The product of the four expressions in (C4) is 1 as required by Proposition 1.1.
The expression for σ2(r) is of the same form as that for a “relative” unit in
a cyclic quartic extension, as given in [41], §2. These expressions are also
strikingly similar to those in [23], §1.1.

Because of Eq. (4.1a), for the map σ to fix k elementwise it is necessary
that either

m = ±2 or m2 − 4 /∈ k2. (4.2)

Substituting (C4) into the condition in Eq. (1.3) with d = 1,

r +
−r − 1
r + u

+
u

r
+
−u−1r − 1
r + 1

= A, A ∈ k. (Tr4)

Clearing fractions and collecting terms, we find that r is a zero of

p(x) = x4 +(u−u−1−A)x3 +((2−A)u−A−4)x2 +(u2−1−Au)x+u2 (Q4)

where m,A ∈ k, and Eqs. (4.1b) and (4.2) hold. By Eq. (4.2), p(x) ∈ k[x]
only if m = ±2. We treat those cases first.

4.2 The cases m = ±2

If m = 2 then u = 1, the formal expressions for σ(r) and σ3(r) become −1,
and we obtain

p(x) = (x+ 1)2(x2 − (A+ 2)x+ 1).

In this case the transformation σ is not a field automorphism of order 4,
but if (A + 2)2 − 4 /∈ k2, the quadratic factor is irreducible in k[x], and the
expression 1/r for σ2(r) does define an automorphism of order 2. The change
of parameter A ← −4 − A changes the signs of the zeroes of the quadratic
factor.
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If m = −2 then u = −1, and the expressions in (C4) become

σ(r) =
−r − 1
r − 1

, σ2(r) = −1
r
, σ3(r) =

r − 1
r + 1

, and σ4(r) = r. (C4′)

Substituting u = −1 into Equation (Q4) gives

p(x) = x4 −Ax3 − 6x2 +Ax+ 1. (Q4′)

Apart from parameter name, this is the P (x) in Proposition 1.2(b) for the
“simplest” quartic fields. If k = Q and A ∈ Z, p(x) is irreducible in Z[x] unless
A ∈ {−3, 0, 3}. In general, p(x) is irreducible in k[x] when A2 + 16 /∈ k2. The
Galois group acts on the zeroes as in (C4′). The polynomials f1(x) = p(x)
and f3(x) in Proposition 2.2, are related by the change of parameter A← −A.

4.3 Fundamental identities when m2 − 4 /∈ k2

When m2− 4 /∈ k2, however, the p(x) in (Q4) is not in k[x]. Conjugating the
coefficients in k(u)/k gives a polynomial p̄(x) 6= p(x). Assuming σ is a field
automorphism, and p(r) = 0, σ(r) is a zero of p̄(x) rather than of p(x). But
that would imply an algebraic relation between p̄((−x− 1)/(x+u)) and p(x).
And there is indeed such a relation:

Theorem 4.1. Let m,A ∈ k, m2−4 /∈ k2, and u, p(x) and p̄(x) be as above.
Then

(x+ u)4 p̄
(
−x− 1
x+ u

)
= (m− 2)p(x).

Proof. Straightforward polynomial algebra.

Although p(x) /∈ k[x], clearly

T (m,A, x) = p(x)p̄(x) (4.3)

is a monic octic formally in Z[m,A][x] (thus in k[x] when m,A ∈ k), with
constant term 1. Theorem 4.1 gives two important properties of T (m,A, x):

Corollary 4.2. Let m, A, and p(x) be as above.

(a) p(x) and p̄(x) have the same splitting field L over k(u), which is the
splitting field of T (m,A, x) over k.

(b) disc(T (m,A, x)) ∈ k2.

Proof. Adjoining to k(u) either the zero r of p(x), or the zero (−r−1)/(r+u)
of p̄(x), define the same extension of k(u). The join of the extensions defined
by all the zeroes thus gives the same splitting field for both quartics.
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For (b), a standard formula (see, for instance, [3], Corollary 3.3.6) gives

disc(T (m,A, x)) = disc(p(x))disc(p̄(x))[Res(p(x), p̄(x))]2.

The arguments of the resultant are interchanged by conjugation in k(u)/k,
but also by 4 (evenly many) row interchanges of the Sylvester’s matrix, which
leaves its determinant unchanged. Therefore, the resultant is in k.

If we differentiate the identity in Theorem 4.1, evaluate at the zeroes of
p(x), and multiply, we obtain disc(p(x)) = u6disc(p̄(x)). The discriminants
are conjugate in k(u)/k and u has norm 1, so disc(p(x)) = cu3 for some c ∈ k.
Thus, disc(p(x))disc(p̄(x)) = c2 ∈ k2, and the proof is complete.

The situation is further simplified by the fact that p(x) is a generalized
reciprocal polynomial:

Lemma 4.3. If m,A ∈ k, u2 −mu+ 1 = 0, and p(x) is as in (Q4), then

p(x)
x2

=
p (u/x)
(u/x)2

.

Proof. Straightforward polynomial algebra.

We use Lemma 4.3 to split p(x) into quadratic factors.

Lemma 4.4. With p(x) as in Eq. (Q4) and Y = x+ u/x,

(a) p(x) = x2F (Y ), where F (Y ) = Y 2 + (−A+ u− u−1)Y −A− 4−Au.

(b) disc(F (Y )) = (m+ 2 +A)2 − 4(m− 2).

(c) If F (Y ) = (Y − α)(Y − β), then

p(x) = q1(x)q2(x) = (x2 − αx+ u)(x2 − βx+ u).

(d) Let Q1 = q1(−1) = 1 + α+ u, Q2 = q2(−1) = 1 + β + u. Then

(i) disc(x2 − αx+ u) = α2 − 4u = Q1(Q1 +Q2u− 2(u+ 1)).

(ii) disc(x2 − βx+ u) = β2 − 4u = Q2(Q2 +Q1u− 2(u+ 1)).

Proof. Straightforward polynomial algebra.

We then have

Proposition 4.5. Let m,A ∈ k, m2 − 4 /∈ k2, and L/k the splitting field of
T (m,A, x). Then [L :k] divides 16.

Proof. Since p(x) splits into quadratic factors in a quadratic extension (at
most) of its coefficient field k(u), its splitting field over k(u) has degree divid-
ing 8, and k(u) has degree 2 over k. Corollary 4.2(a) then gives the result.
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4.4 The quadratic and quartic factors of T (m, A, x)

Note that disc(F (Y )) ∈ k in Lemma 4.4(b), even though F (Y ) /∈ k[Y ]. The
quadratic factors q1(x) and q2(x) of p(x) in Lemma 4.4(c) (and, obviously,
the corresponding factors of p̄(x)) are in k(s, w)[x], where

s2 = (m2 − 4) and w2 = ((m+ 2 +A)2 − 4(m− 2)) = disc(F (Y )). (4.4)

Solving F (Y ) = 0 by quadratic formula, we find the quadratic factors of
T (m,A, x) in k(s, w)[x] are

q1(x) = x2 + (−A+ s− w)x/2 + (m+ s)/2 (4.5a)

q2(x) = x2 + (−A+ s+ w)x/2 + (m+ s)/2, (4.5b)

q3(x) = x2 + (−A− s+ w)x/2 + (m− s)/2 , and (4.5c)

q4(x) = x2 + (−A− s− w)x/2 + (m− s)/2. (4.5d)

These choices give q1(x)q2(x) = p(x) and q3(x)q4(x) = p̄(x). By regrouping
the qi(x) in pairs, we see that T (m,A, x) splits into quartic factors in k(s)[x],
k(sw)[x], and k(w)[x], namely

Ps(x) = p(x) = q1(x)q2(x) and P̄s(x) = p̄(x) = q3(x)q4(x), (4.6a)
Psw(x) = q1(x)q3(x) and P̄sw(x) = q2(x)q4(x), and (4.6b)
Pw(x) = q1(x)q4(x) and P̄w(x) = q2(x)q3(x). (4.6c)

We have the following refinement of Theorem 4.1:

Lemma 4.6. Let m,A ∈ k, m2 − 4 /∈ k2, and notation as above. Then

a) (x+ u)2 q3

(
−x− 1
x+ u

)
= q3(−1)q1(x);

b) disc(q1(x))disc(q3(x)) = ((u− 1)disc(q3(x))/q3(−1))2;
c) (u− 1)disc(q3(x))/q3(−1) = ((m+A− 2)s+ (2−m)w)/2.

Proof. For (a), there clearly must be an algebraic relation between q1(x) and
either q3((−x−1)/(x+u)) or q4((−x−1)/(x+u)). By Eqs. (4.5a) and (4.5c),
the coefficient of x3 in q1(x)q3(x) is −A in agreement with (Tr4). Routine
though tedious algebra completes the verification.

For (b), differentiate (a), evaluate at the zeroes, and multiply.
Finally, (c) may be verified algebraically.

Remarks. The substitution w ← −w replaces (q1(x), q3(x)) with (q2(x), q4(x))
in (a) – (c). Multiplying (a) by its counterpart gives Theorem 4.1.
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To formulate s (and thus u and σ) in k[x] (mod T (m,A, x)), we write

Ps(x) = p(x) = A(x)s+ B(x) where A(x),B(x) ∈ k[x], and take (4.7a)
s ≡ −B(x)/A(x) (mod T (m,A, x)), if Res(A(x), T (m,A, x)) 6= 0. (4.7b)

Similarly, writing

Pw(x) = C(x)w +D(x) where C(x),D(x) ∈ k[x], we can take (4.8a)
w ≡ −D(x)/C(x) (mod T (m,A, x)) if Res(C(x), T (m,A, x)) 6= 0. (4.8b)

We can express these resultants in terms of the “monster” resultant norm

µ = Res(q1(x), q3(x))Res(q2(x), q4(x)). (4.9)

Direct calculation (using plenty of computing power) gives the results

Res(A(x), T (m,A, x)) = (m− 2)2µ2/256, and (4.10a)

Res(C(x), T (m,A, x)) = µ2/256. (4.10b)

Lemma 4.7. Let m,A ∈ k, and either m = ±2 or m2 − 4 /∈ k2, with
q1(x), q3(x) as in Eqs. (4.5a)–(4.5d) and µ as in Eq. (4.9). Then,

µ 6= 0 unless

(m,A) = (2,−4); (−2, 4i) or (−2,−4i) if −1 ∈ k2; or (2/3,−4/3) if −2 /∈ k2.

Proof. If Res(q1(x), q3(x)) = 0, then q1(x) and q3(x) have a common factor
in k(s, w)[x], which is also a factor of every k(s, w)-linear combination of
q1(x) and q3(x). Using Lemma 4.6, we see that qu(x) = x2 + (1 + u)x + 1
or q̄u(x) = x2 + (u−1 + 1)x + 1 has the same common factor, because any
common zero of q1(x) and q3(x) is a fixed point of (at least) one of the linear
fractional transformations σ(x) or σ3(x) in Eq. (C4).

There can be no common factor of degree ≥ 1 unless {q1(x), qu(x), q3(x)}
or {q1(x), q̄u(x), q3(x)} is a linearly dependent set in the k(s, w) vector space
V with basis {1, x, x2}. Let v = (q1(x), qu(x), q3(x)) ∈ V 3, and let M be the
3× 3 matrix whose i, j entry is the coefficient of x3−j in vi. The entries of v
are linearly dependent in V when the “test value” tv = Det(M) is 0. Tedious
algebra gives

tv = (−2m−A)s/2 + (m− 2)w/2− (m2 − 4)/2.

If m = 2, all three terms are 0. In this case, we have w2 = (A+4)2. Taking
w = A+4 and s = 0 we obtain q1(x) = x2−(A+2)x+1 and q3(x) = (x+1)2,
as in §4.2, and gcd(q1(x), q3(x)) = 1 unless (m,A) = (2,−4).

If m = −2, then s = 0, and we obtain w = m+ 2 = 0. But w2 = A2 + 16
when m = −2, so A = ±4i. These give q1(x) = q3(x) = (x∓ i)2.
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If m 6= ±2, then s /∈ k. If (−2m−A) 6= 0, then (−2m−A)s/2 /∈ k. Then
tv /∈ k unless (2m−A)s/2+(m−2)w/2 = 0. But then tv 6= 0 since m 6= ±2.

So if m 6= ±2, tv 6= 0 unless A = −2m. Again w = m + 2, but also
w2 = (m + 2 + (−2m))2 − 4(m − 2) = m2 − 8m + 12. The two conditions
on w are only satisfied simultaneously when m = 2/3 and A = −4/3. The
substitution (s, w) ← (−s,−w) changes v to v′ = (q3(x), q̄u(x), q1(x)) and
gives a “test value” tv′ which is 0 for exactly the same (m,A). The argument
for Res(q2(x), q4(x)) is the same. If m = 2/3, m2 − 4 /∈ k2 when −2 /∈ k2.

Remark. Direct calculation shows that

tv · tv′ = (2−m)Res(q1(x), q3(x)).

Lemma 4.8. Let m,A ∈ k, m2 − 4 /∈ k2, and s and w as in Eq. (4.4). If
T (m,A, r) = 0, then k(s, w) ⊂ k(r).

Proof. We may take r ≡ x (mod T (m,A, x)). Since m 6= ±2, s and w are
given by Eqs. (4.7b) and (4.8b) unless (m,A) = (2/3,−4/3), by Lemma 4.7.
This case may be verified directly.

Proposition 4.9. Let m,A ∈ k, m2 − 4 /∈ k2. Then Pw(x) and P̄w(x) have
the same splitting field over k(w).

Proof. This follows from an argument similar to that in Corollary 4.2, using
Lemma 4.8.

Brute-force algebra gives the simple expressions

disc(q1(x))disc(q2(x)) = (A2 − 4(m− 2)) · (u− 1)2, (4.11a)

Res(q1(x), q2(x)) = w2u, (4.11b)

disc(q1(x))disc(q4(x)) = (A2 − 4(m− 2)) ·Q2
1, and (4.11c)

Res(q1(x), q4(x)) = s2Q1 = (m2 − 4)Q1, (4.11d)

where Q1 = q1(−1) = (m+ 2 +A+ w)/2 is as in Lemma 4.4(d).
From Eqs. (4.11a) and (4.11c), we see that the splitting field of T (m,A, x)

contains k(y), where
y2 = A2 − 4(m− 2). (4.12)

We have the following result:

Proposition 4.10. Let m,A ∈ k, m2− 4 /∈ k2. The zeroes of T (m,A, x) are
simple unless w2y2 = 0 or (m,A) = (2/3,−4/3).

Proof. Eqs. (4.11a) – (4.11d) show that if m 6= ±2, w2 6= 0, and y2 6= 0,
then none of the qi(x) have repeated factors, and Res(qi(x), qj(x)) 6= 0 unless
{i, j} = {1, 3} or {2, 4}. For these, apply Lemma 4.7.
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When w2 = 0, q1(x) ≡ q2(x) and q3(x) ≡ q4(x), so Pw(x) ≡ Psw(x) and
T (m,A, x) = P 2

sw in k[x]. We deal with this case in §4.7. We see from Lemma
4.6(a) and its counterpart for q2(x) and q4(x), that except for the four pairs
(m,A) in Lemma 4.7, if y2 6= 0 the zeroes of Psw(x) and P̄sw(x) are simple,
and the linear fractional transformation σ in Eq. (C4) (defined via Eq. (4.7b))
permutes the zeroes of each cyclically.

The expression in Lemma 4.6(c) for a square root of the discriminant norm
leads to an irreducibility criterion for Psw(x) and P̄sw(x) in k(sw)[x].

Theorem 4.11. Let m,A ∈ k, m2 − 4 /∈ k2. Then

(a) Psw(x) and P̄sw(x) are both irreducible in k(sw)[x] if and only if

[k(s, w) :k(sw)] = 2 and A2 − 4(m− 2) 6= 0.

(b) If Psw(x) and P̄sw(x) are irreducible in k(sw)[x], they define cyclic quar-
tic extensions of k(sw). In each case, the action of the Galois group on
the zeroes is given by (C4), defined via Eq. (4.7b).

Proof. First, Psw(x) = q1(x)q3(x) in k(s, w)[x], so is reducible in k(sw)[x]
if k(sw) = k(s, w). So suppose [k(s, w) : k(sw)] = 2. Conjugation in
k(s, w)/k(sw) changes the sign of the square root of disc(q1(x))disc(q3(x))
in Lemma 4.6(c), so neither disc(q1(x)) nor disc(q3(x)) is a square in k(s, w)
unless their product is 0. Similarly for q2(x), q4(x) and P̄sw(x). Multiply-
ing these square roots gives (m − 2)(A2 − 4(m − 2)) as a square root of
disc(q1(x))disc(q2(x))disc(q3(x))disc(q4(x)). Now m 6= 2 by hypothesis, so if
A2 − 4(m− 2) 6= 0, both Psw(x) and P̄sw(x) are irreducible in k(sw)[x]. But
if A2−4(m−2) = 0, at least one of Psw(x) and P̄sw(x) has a repeated factor,
so is reducible in k(sw)[x].

Part (b) follows from the discussion after Eqs. (4.11a)–(4.11d).

We then obtain an irreducibility criterion for T (m,A, x):

Corollary 4.12. Let m,A ∈ k. Then T (m,A, x) is irreducible in k[x] if and
only if [k(s, w) :k] = 4.

Proof. Clearly, T (m,A, x) is irreducible in k[x] if and only if Psw(x) and
P̄sw(x) are irreducible in k(sw)[x] (which requires [k(s, w) :k(sw)] = 2), and
[k(sw) : k] = 2. We only need to show that, if A2 − 4(m − 2) = 0, then
[k(s, w) :k] < 4. This is trivial if m = 2. Otherwise, A 6= 0, so we can write

w2 = (m+ 2)(m+ 2 + 2A) = (2s/A)2(A/2 + 2)2 ∈ (k(s))2.
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4.5 Pairs of related octics

Eqs. (4.4) and (4.11a)-(4.11d) show the splitting field of T (m,A, x) contains
E = k(s, w, y), where

s2 = m2 − 4, w2 = (m+A+ 2)2 − 4(m− 2), and y2 = A2 − 4(m− 2).

Note that A ← −m − 2 − A has compositional order 2, and interchanges
w2 and y2. [This formula gives the changes of parameter in §4.2.] We call
T (m,A, x) and T (m,−m − 2 − A, x) related octics. We have the following
result:

Theorem 4.13. Let m,A ∈ k, and s2 = m2 − 4 /∈ k2. Then T (m,A, x) and
T (m,−m− 2−A, x) have the same splitting field over k.

Proof. We consider the corresponding quadratic factors

q1(x) = x2 + (−A+ s− w)x/2 + (m+ s)/2 as in Eq. (4.5a), and

ψ1(x) = x2 + (m+ 2 +A+ s− y)x/2 + (m+ s)/2 with y as in Eq. (4.12).

If w2y2 6= 0, Eqs. (4.11a), (4.11c), and Lemma 4.6 show that the qi(x) all de-
fine the same extension of E. Similarly for the corresponding ψi(x). Greatly
facilitated by the substitution A = −(m+ 2)/2 + v and Phil Carmody’s guid-
ance with Pari-GP, we found an algebraic square root of disc(q1(x))disc(ψ1(x))
in E, namely

c0 + c1s+ c2w + c3y + c4sw + c5sy + c6wy + c7swy, where

c0 = (3m2 − 20m+ 12 + 4v2)/16, c1 = (m− 6)/4, c2 = (−3m+ 2 + 2v)/8,
c3 = (−3m+ 2− 2v)/8, c4 = −1/4, c5 = −1/4, c6 = −1/4, and c7 = 0.

If w2 = 0, at least one of disc(q1(x))disc(ψ1(x)) and disc(q1(x))disc(ψ2(x))
will be nonzero unless y2 = 0 also. (Replacing ψ1(x) with ψ2(x) has the effect
of replacing y with −y in the algebraic square root.) But w2 = y2 = 0 only
when m = 6 and A = −4, for which the two related octics are identical,
T (6,−4, x) = (x2 − 2x− 1)4.

4.6 The Galois group of T (m, A, x)

We can now prove the main results about the splitting field L/k of T (m,A, x).

Theorem 4.14. Let m,A ∈ k, and [E :k] = 8 where E = k(s, w, y). Then

(a) T (m,A, x) is irreducible in k[x] with Galois group G ∼= 8T11.

(b) The fixed field of the quaternion subgroup is k(swy).



22 KURT FOSTER

(c) The fixed fields of the subgroups ∼= D4 are k(s), k(w), and k(y).

(d) The fixed fields of the subgroups ∼= C4×C2 are k(sw), k(sy), and k(wy).

Proof. T (m,A, x) is irreducible in k[x] by Corollary 4.12. If L/k is its splitting
field, then E ⊂ L, [L : k] | 16 by Proposition 4.5, and L contains a C4

extension of k[sw] by Theorem 4.11, so L 6= E. Thus |G| = 16, and G ⊂ A8

by Corollary 4.2(b). This narrows the possibilities for G to 8T9, 8T10, and
8T11 . Of these, only 8T11 has a quaternion subgroup.

Let H be the subgroup of G fixing k(swy). Then |H| = 8. Since the qi(x)
remain irreducible in E[x], it follows that Ps(x), Psw(x), and Pw(x) remain
irreducible in k(s, swy)[x], k(sw, swy)[x], and k(w, swy)[x], respectively. By
Lemma 4.6 and Eqns. (4.11a) and (4.11c), their discriminants are not squares
in the coefficient fields, and L is normal of degree 4 over each, so

G(L/k(s, swy)) ∼= G(L/k(sw, swy)) ∼= G(L/k(w, swy)) ∼= C4.

Now the elements of order 4 in these groups can only map q1(x) to q2(x),
q3(x), and q4(x), respectively. Thus, H has 6 elements of order 4, so H ∼= Q8,
proving (a) and (b). By Corollary 4.2, G(L/k(s)) ∼= D4. By Proposition
4.9, G(L/k(w)) ∼= D4 also; and G(L/k(y)) ∼= D4 (use the related octic),
establishing (c). The other three maximal subgroups of 8T11 are ∼= C4 × C2,
so (d) follows by the Galois correspondence.

Remarks. The degree of E/k can be determined by testing whether s2, w2,
y2, s2w2, s2y2, w2y2, and s2w2y2 are squares in k.

When [E :k] = 8, the factors Psw(x) and P̄sw(x) of T (m,A, x) define the
fixed fields of a conjugacy class of order-2 subgroups of G. The corresponding
factors of the related octic define the fixed fields of a different conjugacy class
of order-2 subgroups.

Taking
√
a = sw,

√
b = sy,

√
c = s, and d = disc(q1(x)) in [27], Ap-

pendix, we have disc(q1(x))disc(q2(x)) = ka, disc(q1(x))disc(q3(x)) = kc, and
disc(q1(x))disc(q4(x)) = kac. Using Eqs. (4.11a), (4.11c), and Lemma 4.6, the
obstruction (a, b)(c, c) to Galois group DC ∼= 8T11 then evaluates to 1.

Corollary 4.15. Let m,A ∈ k, m2−4 /∈ k2, [E :k] = 4 where E = k(s, w, y),
and L/k the splitting field of T (m,A, x). Then [L :k] = 8, and

G(L/k) ∼=


Q8, if swy ∈ k,
D4
∼= D8(8), if w ∈ k or y ∈ k, and

C4 × C2, if sw ∈ k, sy ∈ k, or wy ∈ k.

Proof. At least one of the related octics is irreducible in k[x] by Corollary 4.12,
and the rest is clear from Theorem 4.14.
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We formulate the condition w ∈ k (disregarding [E :k]) by taking

m ∈ k, d ∈ k×, A = −m−2−d− (m−2)/d, and w = (m−2)/d−d. (4.13)

Substituting into Eq. (4.6c), we obtain

Pw(x) = x4+(m+2d+2)x3+((d+2)m+d2+2d+2)x2+((d+1)m+2)x+1. (4.14)

If [E : k] = 4, the related octic has Galois group D8(8), and is a defining
polynomial for the splitting field L, while Pw(x) as in Eq. (4.14) and P̄w(x) are
quartics in k[x] with G ∼= D4 which define the same conjugacy class of (non-
normal) quartic subfields of L. Note that replacing d by (m−2)/d interchanges
Pw(x) and P̄w(x). If d = (m − 2)/d = t, then Pw(x) = P̄w(x) = Pt(x) as in
§4.7. We give two other “degenerate” cases of Eqs. (4.13) and (4.14). In both
cases, the “generic” Galois group is V4.

When d = −2, A = −m−2−A, and w2 = y2 = (m−6)2/4. By Eqs. (4.11c)
and (d), disc(Pw(x)) ∈ k2. We find L = k(

√
(m− 2)2 − 16,

√
(m− 4)2 − 4).

We have A = −m− 2−A for the pair (m,A) = (2/3,−4/3) in Lemma 4.7 .
If d = −1 then A = −3, and disc(Pw(x)) ∈ k2 when m = 4− t− t2, t ∈ k.

In this case, L = k(
√
t2 − 4,

√
(t+ 1)2 − 4).

If swy ∈ k or wy ∈ k and [E :k] = 4, the related octics are distinct defining
polynomials for the splitting field. We do not have a complete description of
either swy ∈ k or wy ∈ k. With respect to m, Res(w2, y2) = (A+4)2(A2+16).
Taking A = −4, we find:

Proposition 4.16. Let t ∈ k.

(a) If [k(
√
t2 + 4,

√
t2 − 4) : k] = 4, then the related octics T (2 − t2,−4, x)

and T (2− t2, t2, x) are both irreducible in k[x], with G ∼= C4 × C2.

(b) If [k(
√
t2 + 4,

√
t2 + 8):k] = 4, then the related octics T (−t2 − 2,−4, x)

and T (−t2 − 2, t2 + 4, x) are both irreducible in k[x], with G ∼= Q8.

Proof. One simply has to check that in both (a) and (b), the elementary
Abelian 2-extension of k is E = k(s, w, y), that wy ∈ k in (a), and swy ∈ k
in (b).

Remarks. Taking A = ±4i and m = t2 + 2 ∓ 8i for t ∈ Z[i], T (m,A, x) and
the related octic are “typically” a pair of defining polynomials for a C4 × C2

extension of Q(i) (wy ∈ k).
With respect to A, Res(w2, y2) = (m−2)2(m−6)2. Taking m = 6, we find

that if A = 8an − 4 where an + bn
√

2 = (3 +
√

2)n, the octics T (6, A, x) and
T (6,−8 − A, x) are pairs of defining polynomials for a family of quaternion
fields reminiscent of the cyclic octic fields in [34].

If sw ∈ k and [k(s, y) : k] = 4, Psw(x) and P̄sw(x) are “Murphy’s twins”
in k[x], and define distinct cyclic quartic extensions of k. The related octic is
a defining polynomial for their join. We deal with Murphy’s twins for k = Q
and m,A ∈ Z, in §6.3.
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4.7 Washington’s cyclic quartic fields

We close this section with a discussion of the “degenerate” case w2 = 0. It
produces the polynomials P (x) in Proposition 1.2(c). These give alternate
defining polynomials for the cyclic quartic fields constructed by L.C. Wash-
ington in [41] when k = Q and t ∈ Z− {0,−2}.

Very early on, Phil Carmody drew the author’s attention to examples of
T (m,A, x), m,A ∈ Z, m 6= ±2, with repeated factors in Z[x]. It was this
observation that originally led us to consider the case w2 = 0. As when
s2 = 0, T (m,A, x) is again the square of a quartic in k[x].

If m = t2 + 2, then 4(m− 2) = 4t2, and w = 0 when A = −t2− 4± 2t. To
choose the ± sign, we substitute into the formulas in Lemma 4.4(d); we find
that Q1 = Q2 = ±t, and

disc(q1(x)) = disc(q2(x)) = t(t∓ 2)(u+ 1), whence (4.15)

disc(q1(x))disc(q3(x)) = t2(t∓ 2)2(t2 + 4). (4.16)

Taking A = −t2 − 4− 2t gives disc(q1(x))disc(q3(x)) = t2(t+ 2)2(t2 + 4), the
same form as the product of the discriminants of the quadratic factors of the
quartics in [41]. Then T (t2 + 2,−t2 − 2t− 4, x) = P 2

t (x), where

Pt(x) = x4+(t2+2t+4)x3+(t3+3t2+4t+6)x2+(t3+t2+2t+4)x+1, (4.17)

the P (x) in Proposition 1.2(c). By Theorem 4.11, Pt(x) is irreducible in k[x]
when t ∈ k, t2 + 4 /∈ k2, and t 6= −2.

Next, we relate the Pt(x) to the cyclic quartics

ft(x) = x4 − t2x3 − (t3 + 2t2 + 4t+ 2)x2 − t2x+ 1 (4.18)

in [41]. Clearly ft(x) is a reciprocal polynomial; if ft(ρ) = 0 then the element
of order 2 in the Galois group maps ρ to 1/ρ. Similarly, the element σ2 of
order 2 in the Galois group of Pt(x) maps a zero r to u/r. With m = t2 + 2,
we have u2 − (t2 + 2)u + 1 = 0, and u = v2 where v2 − tv − 1 = 0. Then
σ2(r/v) = 1/(r/v), so r/v is a zero of a reciprocal polynomial. By formulating
u and σ as rational expressions (mod Pt(x)), and using Pari-GP to bludgeon
the algebra into submission, we find that

u ≡ −x3 − (t2 + 2t+ 3)x2 − (t3 + 2t2 + 3t+ 3)x− 1 (mod Pt(x)). (4.19)

Taking v = (u− 1)/t, we find that r/v is in fact a zero of ft(x).

Proposition 4.17. If t ∈ k − {0,−2}, Pt(x) and ft(x) define the same ex-
tension of k.

Proof. Eq. (4.19) and v = (u− 1)/t give ft(x/v) ≡ 0 (mod Pt(x)), where

x/v ≡ (x3 + (t2 + t+ 3)x2 + (t2 + t+ 3)x+ 1)/t2 (mod Pt(x)), if t 6= 0.
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Reformulating v (mod ft(x)), we have Pt(xv) ≡ 0 (mod ft(x)), where

xv ≡ (−x2 + (t2 + t)x− 1)/(t+ 2) (mod ft(x)), if t 6= −2.

Both transformations are defined when t ∈ k−{0,−2}, and the result follows.

Remarks. The related octic T (t2+2, 2t, x) has the repeated factor (x2−tx−1)2.
The cofactor is a quartic which defines the same extension of k as Pt(x).

5 T (m, A, x) and number field extensions

We now apply the preceding results when k is a number field and m,A ∈ Ok,
when the zeroes of T (m,A, x) are units. We continue to assume that u is
defined via Eq. (4.7b).

If m2 − 4 /∈ k2 and w2y2 6= 0, the zeroes of T (m,A, x) are all simple by
Proposition 4.10. We have the following result:

Theorem 5.1 (Real and complex zeroes). Let k be a number field, k ⊂ R,
m,A ∈ Ok, m2 − 4 /∈ k2. Then the number of real zeroes of T (m,A, x) is

(a) None, if s2 < 0 or w2 < 0;

(b) Four, if s2 > 0, w2 > 0, and y2 < 0;

(c) Eight, if m < −2;

(d) Eight , if m > 2, w2 > 0, y2 > 0, and∣∣(A+ 4)2 +mA(A+ 4) +A2
∣∣ > 16; and

(e) None, if m > 2, w2 > 0, y2 > 0, and∣∣(A+ 4)2 +mA(A+ 4) +A2
∣∣ < 16,

i.e. if 2 < m < 6 and −m− 2 + 2
√
m− 2 < A < −2

√
m− 2.

Proof. For (a), k(s, w) ⊂ k(r), so k(r) * R for each zero r, by Lemma 4.8.
For (b), k(s, w) ⊂ R, so qi(x) ∈ R[x]. Now, disc(q3(x)) has the same sign

as disc(q1(x)) by Lemma 4.6(b), while disc(q2(x)) and disc(q4(x)) have the
opposite sign by Eqs. (4.11a) and (4.11c).

For (c), if m < −2 then E = k(s, w, y) ⊂ R, so the disc(qi(x)) all have the
same sign. Here u < 0, so by Lemma 4.4(d), disc(q1(x)) > 0.

If m > 2, w2 > 0, and y2 > 0, then again the disc(qi(x)) all have the same
sign, but here u > 0. Again using Lemma 4.4(d), disc(q1(x)) and disc(q2(x))
are both > 0 or both < 0, according as whether |αβ| > 4u or |αβ| < 4u. By
Lemma 4.4(a), αβ = A+4+Au. Multiplying by the corresponding conditions
for q3(x) and q4(x) gives (d) and (e).
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Remarks. Suppose m,A ∈ R. If m < 2 (in particular, when s2 < 0), then
w2 > 0 and y2 > 0. Since Max(|A| , |−m− 2−A|) ≥ |(m+ 2)/2|, we have
Max(w2, y2) ≥ (m− 6)2/4 ≥ 0, so w2 and y2 cannot both be negative.

The cases w2 < 0 and y2 < 0 correspond to related octics. Thus, if m > 2
and A is such that w2y2 < 0, one of the two related octics has signature (0, 4)
and the other has signature (4, 2).

Suppose T (m,A, x) is irreducible with G ∼= 8T11. Then the fixed field of
complex conjugation is non-normal over k in cases (a) and (b). In case (e), the
fixed field of complex conjugation is the elementary Abelian extension E/k.

If m2 − 4 /∈ k2, T (m,A, x) can have repeated zeroes only if w = 0 or
y = 0. If w = 0 we have T (t2 + 2,−t2 − 2t − 4, x) = P 2

t (x) as in §4.7. The
case y = 0 corresponds to the related octic T (t2 + 2, 2t, x). Assuming k ⊂ R,
the following result allows us to deal with real and complex repeated zeroes.

Theorem 5.2. Let k ⊂ R, t ∈ Ok, and T (t2 + 2,−t2 − 2t− 4, x) = P 2
t (x) as

in §4.7. Then Pt(x) has 4 real zeroes if |t+ 1| > 1, and none if |t+ 1| < 1.

Proof. In §4.7, the choice A = −t2−2t−4 makes disc(q1(x)) = t(t+2)(u+1)
in Eq. (4.15). Also in §4.7, u = v2 where v2 − tv− 1 = 0. Thus, u+ 1 ≥ 1, so
disc(q1(x)) has the same sign as t(t+ 2) = (t+ 1)2 − 1.

The following result depends only on the fact that the zeroes of T (m,A, x)
are units when m and A are algebraic integers. We let ∼ indicate associates.

Proposition 5.3 (Exceptional sequences). Let k be a number field,
m,A ∈ Ok, m2 − 4 /∈ k2, and T (m,A, r) = 0. Then

(a) r + 1 ∼ r + u in k(r).

(b) If m − 2 ∈ O×k , then r, r + 1, r + u is an exceptional sequence of three
units.

Proof. For part (a), σ(r) = (−r−1)/(r+u) is a zero of T (m,A, x), hence is a
unit. For part (b), use Ps(−1) = P̄s(−1) = m−2 and (u−1)2 = (m−2)u.

We obtain additional units and associates when m, A, and w ∈ Ok. The
following result does not require that [E :k] = 4.

Proposition 5.4 (“Constellations” of units and associates). Let k be a num-
ber field, m, d ∈ Ok, d | m − 2, and A, w and Pw(x) as in Eqs. (4.13) and
(4.14). If Pw(r) = 0, then

(a) r + 1 ∼ r + u ∼ r + 1 + d, and r ∼ r + 1 + d+ u ∼ 1.

(b) If d ∈ O×k , then all the quantities in (a) are units.

Proof. In this case, q1(x) = x(x + 1 + d) + u(x + 1) = x(x + 1 + d + u) + u,
giving (a). For (b), note that in Eq. (4.14), Pw(−1) = d2. Thus, if d ∈ O×k ,
r + 1 ∼ 1, and the result follows.
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6 Extensions of k = Q
We let k = Q and m,A ∈ Z. For |m| , |A+ (m+ 2)/2| ≤ 104, a simple
numerical sweep found that [E :Q] = 8 for over 95% of pairs (m,A). So it
appears that for m,A ∈ Z, T (m,A, x) “typically” produces non-normal octic
fields whose normal closures over Q have Galois group G ∼= 8T11.

6.1 Real and complex fields

The only (m,A) ∈ Z × Z to which Theorem 5.1(e) applies, is (4,−3). Here,
A = −(m+2)/2, the “degenerate” case d = −2 of Eq. (4.14); we have G ∼= V4

and L = Q(ζ12). The only t ∈ Z for which |t+ 1| < 1 as in Theorem 5.2 is
t = −1. In this case, L = Q(ζ5).

Apart from these cases, assuming m 6= ±2, by Theorem 5.1 the splitting
field of T (m,A, x) is totally real for m,A ∈ Z unless s2 < 0 (m = −1, 0, or
1); or, m > 2 and w2 < 0 or y2 < 0. Now y2 < 0 requires that A2 < 4(m−2),
so non-real fields are relatively rare. When [E : Q] < 8, they are even less
common. We have the following result:

Theorem 6.1. Let m,A ∈ Z, s2w2y2 6= 0, L the splitting field of T (m,A, x).

(a) If yw ∈ Z, then L is totally real unless (m,A) = (1,−4), (1, 1), or
(4,−3).

(b) If swy ∈ Z, then L is totally real.

(c) If m ∈ Z, d ∈ Z, d | m − 2, d2 ≤ |m− 2|, and A and Pw(x) are as in
Eqs. (4.13) and (4.14), then L is totally real unless (m, d) = (−1,±1),
(0,±1), (1,±1), (4,−1), or (m,−1) with m > 4.

(d) If sw ∈ Z, then L is totally real unless (m,A) = (7,−4) or (7, 1).

Proof. For (a) and (b), one simply checks the criteria of Theorem 5.1, keeping
in mind that w2 and y2 cannot both be negative. For (c), we have w2 > 0,
and if 4 ≤ d2 ≤ |m− 2|, |(m− 2)/d+ d| ≤ |(m+ 2)/2|, so y2 ≥ (m− 6)2/4.

For (d), we have the “polynomial square root” identity

s2w2 = (m2 +Am+ 2A+ 4)2 − 4A(A+ 4)m− 8(A2 + 4A+ 8).

The “remainder” −4A(A+4)m−8(A2 +4A+8) is even, so if s2w2 is a perfect
square, its square root differs from m2 +Am+ 2A+ 4 by an even integer 2k.
Now here, L is totally real unless m > 2 and A2 < 4(m − 2). This makes
the remainder so small, we only need to consider the cases −4 < A < 0 and
0 ≤ k ≤ 4. The only ones where sw ∈ Z and s2w2y2 6= 0 have k = 1, namely
(m,A) = (7,−4) and (7, 1).
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We note that (m, d) = (4,−2) defines the same pair (m,A) = (4,−3) as
(m, d) = (4,−1) in (c).

The only cases where L/Q is Abelian and non-real are (m,A) = (3,−3)
or (3,−2) (L = Q(ζ5)); (4,−3) (L = Q(ζ12)); (1,−4) or (1, 1) (L = Q(ζ15));
(7,−4) or (7,−5) (L = Q(ζ20)); and (7, 1) or (7,−10) (L ⊂ Q(ζ95), [L :Q] = 8).
The cases (m,A) = (7,−4) and (7, 1) give “Murphy’s twins.” In both cases,
the splitting field of one is Q(ζ5), while that of the other is the real subfield of
L. The C4×C2 cyclotomic field Q(ζ16) is “left out,” although its real subfield
is the splitting field of Pt(x) for t = 2.

All quaternion fields defined by T (m,A, x) for m,A ∈ Z are totally real,
by Theorem 6.1(b).

6.2 Special units

We have Z× = {−1, 1}, so Propositions 5.3(b) and 5.4(b) only apply with
m ∈ {1, 3} and d ∈ {−1, 1}, respectively.

The 1-parameter family T (1, A, x), A ∈ Z, produces fields which are totally
imaginary by Theorem 5.1(a), and with exceptional sequences of three units
by Proposition 5.3(b). We have [E :Q] = 8 except for A ∈ {−3, 0} or {−4, 1},
when [E :Q] = 4. Eq. (4.13) gives A = −3 when d = −1; the quartic factors
Pw(x) = x4 + x3 + 2x2 + 2x + 1 and P̄w(x) = x4 + 5x3 + 8x2 + 4x + 1 of
T (1,−3, x), both have the minimum quartic discriminant (See [15]) of 117.
The related octic, T (1, 0, x) = x8−3x6 +3x5 +14x4 +15x3 +9x2 +3x+1, is a
defining polynomial for the splitting field, the Hilbert Class Field of Q(

√
−39).

Both related octics T (1,−4, x) and T (1, 1, x) are irreducible in Z[x], with
G ∼= C4×C2, by Proposition 4.16(a) with t = 1. The splitting field is Q(ζ15).

The 1-parameter family T (3, A, x), A ∈ Z, also produces fields with excep-
tional sequences of three units. But these fields are totally real, except when
A ∈ {−6, 1}, {−5, 0}, {−4,−1}, or {−3,−2}. Since 4(m− 2) = 4 for m = 3,
w2 /∈ Z2 and y2 /∈ Z2 unless w2y2 = 0. It is also not hard to check that with
m = 3 and A ∈ Z, w2y2 /∈ Z2 and s2w2y2 = 5w2y2 /∈ Z2 unless w2y2 = 0.
Thus, [E :Q] = 8 unless either 5w2 ∈ Z2 or 5y2 ∈ Z2. Taking 5w2 ∈ Z2 gives
a family of “Murphy’s twins” (See Eqs. (6.3a) - (6.4b)). These define a family
of cyclic quartic fields which (apart from Q(ζ5)) are real, contain Q(

√
5), and

have exceptional sequences of three units by Proposition 5.3(b).
Using Pari-GP, we checked T (m,A, x) for small values of m and A against

the octic fields with small discriminants listed in the tables of [4]. We found
that T (3,−6, x), T (1,−2, x), and T (1,−14, x) all define the two conjugate
octic fields of minimum discriminant for signature (0, 4) and G ∼=8 T11. Each
of these polynomials gives exceptional sequences of 3 units in those fields.

If m, d ∈ Z, m 6= ±2, d | m−2, and r is a zero of Pw(x) given by Eqs. (4.13)
and (4.14), σ(r) = (−r − 1)/(r + u) is a unit in Q(r). When d 6= −1, this
allows us to exhibit a system of three independent units for the field Q(r)
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when this is a totally real quartic field. The values d = −1 and d = 1 give the
1-parameter families

Pw(x) = x4 +mx3 + (m+ 1)x2 + 2x+ 1, and (6.1a)

Pw(x) = x4 + (m+ 4)x3 + (3m+ 5)x2 + (2m+ 2)x+ 1, (6.1b)

respectively, to which Proposition 5.4(b) applies. If r is a zero of Eq. (6.1b),
then (with u defined via Eq. (4.7b)) r, r + 1, r + 2, r + u, and r + 2 + u are
all units.

6.3 Murphy’s twins

If m,A ∈ Z and sw ∈ Z, the “Murphy’s twins” Psw(x) and P̄sw(x) define
cyclic quartic number fields when the conditions of Theorem 4.11 hold, and
(with u and σ defined via Eq. (4.7b)) their zeroes are units satisfying (M) with
n = 4. We give a description of “Murphy’s twins” cyclic quartic fields having
a given quadratic subfield, based on standard results about norms from real
quadratic fields. We show that any quadratic field which is contained in some
cyclic quartic field, is a subfield of infinitely many “Murphy’s twins” cyclic
quartic fields.

Let d > 1 be a squarefree integer, K = Q(
√
d), and assume that m ∈ Z,

m2 − 4 = dN2, N ∈ Z. Then (m + N
√
d)/2 is a unit of norm 1 in OK ,

so m and N are (to within sign) generalized Lucas and Fibonacci numbers,
respectively, which we describe as follows.

Let ε > 1 be the fundamental unit of K, and ε̄ its conjugate. Let

εn =
Ln + Fn(ε− ε̄)

2
, where Ln, Fn ∈ Z. (LF)

The properties in [11], Theorem 179, where d = 5, and Ln and Fn are the
Lucas and Fibonacci numbers, easily generalize to any squarefree d > 1.
We have Q(

√
m2 − 4) = Q(

√
d) when m = ±Ln, where n is arbitrary if

N (ε) = +1, but n must be even if N (ε) = −1.
Now we want w2 = dY 2 for some Y ∈ Z. Taking X = m + A + 2 ∈ Z,

we may express this as (X + Y
√
d)/2 = π ∈ OK , N (π) = m − 2. Then

X2 + (m − 2)2 = d(N2 + Y 2), so d is the sum of two squares, as expected if
K is contained in a cyclic quartic field. We have the following result:

Proposition 6.2. Let d > 1 be squarefree, d = a2 + b2, K = Q(
√
d), Ln and

Fn as in Eq. (LF). There are infinitely many m such that Q(s) = K, for
which there are infinitely many A ∈ Z such that T (m,A, x) = Psw(x)P̄sw(x)
in Z[x].

Proof. If N (ε) = −1, then for any j ∈ Z, we obtain sw ∈ Z by taking

m = L2k, X + Y
√
d = 2(ε2k − 1)ε2j−1, and A = −m− 2±X.
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If N (ε) = +1, choose n and the ± sign so that u = ±εn ≡ 1 (mod aOK).
Then (u− 1)/a ∈ OK , so sw ∈ Z for any j ∈ Z, if

m = ±Ln, X + Y
√
d = 2((u− 1)/a)(b−

√
d)εj , and A = −m− 2±X.

Remark. The condition N (π) = m − 2 may well have other solutions than
those given in Proposition 6.2.

Thus, there are “Murphy’s twins” cyclic quartic fields containing Q(
√
d)

whenever d > 1 is squarefree and the sum of two squares. But if d is even,
and K = Q(

√
d) has N (ε) = +1, K is not a subfield of any of Washington’s

cyclic quartic fields (their quadratic subfields all have N (ε) = −1), or (as is
easily shown) of any “simplest” quartic fields. The smallest such d is 34.

The only non-real Murphy’s twins cyclic quartic field isQ(ζ5), which occurs
when (m,A) = (3,−3), (3,−2), (7,−4), and (7, 1).

We can make P(sw)′(x) = x4Psw(1/x) as per Proposition 2.2, with param-
eter m′ = m, the same square root s of m2 − 4, and (sw)′ = s ·w′, specifying
A′ and w′ by

m+ 2 +A′ + w′

2
=
(
m+ 2 +A− w

2

)(
m+ s

2

)
, that is (6.2a)

A′ =
m2 +mA− 4− sw

2
and w′ =

(m+A+ 2)s−mw
2

. (6.2b)

Of course, (m,A′,−s,−w′) gives the same P(sw)′(x) as (m,A′, s, w′). Note,
however, that if sw 6= 0, Psw(x) and P̄sw(x) produce different values of A′.
For the Pt(x) in §4.7, A′ = −t3 − t2 − 2t − 4 and (sw)′ = −t5 − 4t3 give
P(sw)′(x) = x4Pt(1/x).

The case m = 3 is particularly simple. Here, d = 5, ε = τ , the “golden
ratio,” and (X + Y

√
5)/2 has norm m − 2 = 1. We take X = L2j . With

A = −5 + L2j and sw = 5F2j , we obtain

Psw(x) = x4 + (5− L2j)x3 + (9− 5F2j−1)x2 + (5− L2j−2)x+ 1 and (6.3a)

P̄sw(x) = x4 + (5− L2j)x3 + (9− 5F2j+1)x2 + (5− L2j+2)x+ 1. (6.3b)

With A = −5− L2j and sw = 5F2j , we obtain

Psw(x) = x4 + (5 + L2j)x3 + (9 + 5F2j+1)x2 + (5 + L2j+2)x+ 1 and (6.4a)

P̄sw(x) = x4 + (5 + L2j)x3 + (9 + 5F2j−1)x2 + (5 + L2j−2)x+ 1. (6.4b)

As suggested by Eq. (6.2a), in both families x4Psw(1/x) is obtained by
taking P̄sw(x) and shifting the index.
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As mentioned in §6.2, the cyclic quartic fields given by Eqs. (6.3a)-(6.4b)
have exceptional sequences of three units r, r + 1, r + u as per Proposition
5.3(b). The zeroes of the related octics also give exceptional sequences of
three units, which are generally of degree 8 over Q.

It is easy to show that for a given m, there can be only finitely many A ∈ Z
for which either y2 or y2w2 is a perfect square. Consequently, for a given m
there can be only finitely many A yielding Murphy’s twins which do not have
distinct cyclic quartic splitting fields. The octics with (m,A) = (−3,−4),
(−7, 8), and (−66, 13), are the only examples we know where s2w2y2 6= 0 and
the “twins” have the same C4 splitting field.

6.4 The cases [L :Q] = 8 when wy ∈ Z, swy ∈ Z, and w ∈ Z
We apply Proposition 4.16 to the cases wy ∈ Z and swy ∈ Z by taking t ∈ Z+.
In (a), we have [E :Q] = 4 when t 6= 2; and in (b), [E :Q] = 4 when t > 1.
Clearly t2−4 and t2+4 are both squarefree for a positive proportion of t ∈ Z+;
likewise for t2 + 4 and t2 + 8, so these families of C4 × C2 and Q8 number
fields are infinite. The family of quaternion fields mentioned in the Remarks
after Proposition 4.16 may also be shown to be infinite.

When m, d ∈ Z, m 6= ±2, and d | m − 2 in Eqs. (4.13) and (4.14), it is
not hard to show that Pw(x) is irreducible in Z[x] unless d = −2 and m = 6.
Apart from the special cases described after Eqs. (4.13) and (4.14), the only
instances we know where Pw(x) ∈ Z[x] has G � D4 are (m,A) = (−3, 5),
(−7,−3) and (−66, 51). In these instances, s2y2 ∈ Z2, and G ∼= C4. The
related octics are the 3 instances mentioned in §6.3 in which the “twins” both
define the same C4 field.

6.5 Regulator formulas

Let k = Q, and m,A ∈ Z. If T (m,A, r) = 0 and F = Q(r), then O×F has
rank 3 if F has signature (0, 4) or (4, 0). We show that in most such cases,
the system 〈ζ, ε, r, σ(r)〉 has rank 3, where 〈ζ〉 is the torsion units in F , ε is
the fundamental unit of a real quadratic subfield of F , σ(r) is as in Eq. (C4)
with u as per Eq. (4.7b). The regulator formulas are similar to those in [17]
and [41].

In the following three results (which we state without proof), by Theorem
4.11 we can treat σ as a field isomorphism. Checking that the ln2() values are
not both 0, is left as an exercise for the reader.

Proposition 6.3. Let m ∈ {−1, 0, 1}, (m,A) 6= (−1,−3), (−1, 1), (0,−3),
(0,−1), or (1,−3). Let ε > 1 be the fundamental unit of Q(w) and 〈ζ〉 the
torsion units in Q(r). Then

Reg〈ζ, ε, r, σ(r)〉 = 16 ln(ε)
(
ln2 |r|+ ln2 |σ(r)|

)
6= 0.



32 KURT FOSTER

Proposition 6.4. Let m > 2 and (m+ 2 +A)2 < 4(m− 2). Let ε > 1 be the
fundamental unit of Q(s) and 〈ζ〉 the torsion units in Q(r). Then

Reg〈ζ, ε, r, σ(r)〉 = 4 ln(ε)
(
ln2
∣∣r2/u∣∣+ ln2

∣∣σ(r)2u
∣∣) 6= 0.

Proposition 6.5. Let |m| > 2. Assume T (m,A, x) = Psw(x)P̄sw(x) in Z[x],
(m,A) 6= (3,−2) or (3,−3). Let ε > 1 be the fundamental unit of Q(s). If
T (m,A, r) = 0, [Q(r) :Q] = 4, and Q(r) is real, then

Reg〈−1, ε, r, σ(r)〉 =
1
2

ln(ε)
(
ln2
∣∣r2/u∣∣+ ln2

∣∣σ(r)2u
∣∣) 6= 0.

For Pw(x) as in Eqs. (4.13) and (b), σ(r) is a unit in Q(r), but it is not
an algebraic conjugate of r. In this case we have the following result:

Proposition 6.6. Let m, d ∈ Z, d | m− 2, d 6= −1, d2 ≤ |m− 2|. Let Pw(x)
be as in Eqs. (4.13) and (b). Assume Pw(x) is irreducible with signature
(4, 0), and ε > 1 is the fundamental unit of Q(s). Then up to a factor of
(1 + O (|d/m−2|)) = (1+O(1/

√
|m−2|)),

Reg〈−1, ε, r, σ(r)〉 ≈
2 ln(ε)

∣∣ln2 |m− 2|+ ln
∣∣(d+1)2/d

∣∣ ln |m− 2| − ln |d| ln |d+ 1|
∣∣ .

Proof. With R = 1/(m − 2), we can express the zeroes of x2 − mx + 1 or
x2− (1/R+ 2)x+ 1 as formal power series in R, u1 = 1/R+ 2−R+ 2R2 + . . .
and u2 = R− 2R2 + . . ., which converge for |m− 2| > 4.

Taking q1(x) = x2 + (1 + d+ u1)x+ u1, with a zero r1 ≈ −1, we obtain a
formal series for r1 with terms pk(d)Rk, where pk(d) ∈ Z[d] has degree k. This
gives a series for σ(r1) = −(r1 +1)/(r1 +u1). Now Pw(x) = q1(x)q4(x), where
q4(x) = x2 +(d+1+u2)x+u2, which has a zero r3 ≈ −d−1. (The coefficient
of Rk in the series for r3 has a power of d + 1 in the denominator.) Using
ε, r1, σ(r1); ε′ = ±ε−1, r3, σ(r3) = −(r3 + 1)/(r3 + u2); and ε, r2 = u1/r1,
σ(r2) = u2/σ(r1) to form the regulator determinant then gives the result.

Remarks. When d = −1 the quartic fields defined by the Pw(x) in Eq. (6.1a)
are totally real when m < −2, but r + 1, r + u ∈ 〈−1, ε, r〉, so 〈−1, ε, r, σ(r)〉
has rank 2 at most. When m = 4 − t − t2, t ∈ Z, t > 2, and G = V4,
the fundamental units of the 3 quadratic subfields of the splitting field give 3
independent units.

Now σ(r) = (−r− 1)/(r+ u) = −(r+ 1)2/rq1(−1). Thus, r+ 1 and r+ u
are both units precisely when q1(−1) = (m + A + 2 + w)/2 is a unit. With
k = Q and m,A ∈ Z, we then find that q1(−1) ∈ 〈ζ, ε〉, so

[〈ζ, ε, r, r + 1〉 :〈ζ, ε, r, σ(r)〉] = 2, when q1(−1) = ±1, or m− 2 = ±1 (6.5)
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This gives a “one-half” regulator in Proposition 6.3 when m = 1; in Proposi-
tion 6.4 when m = 3 and A = −6, −5, or −4; for the quartics in Eqs. (6.3a)
- (6.4b); and for the quartics in Eq. (6.1b).

The regulators in Propositions 6.3–6.6 can be extremely small. We esti-
mate the “one-half” regulator R1 = Reg〈ζ, ε, r, r+1〉 for infinite families with
ε = τ , the “golden ratio;” this makes the factor ln(ε) as small as possible.

When m = 1, A ∈ Z, A 6= −3, and T (1, A, r) = 0, F = Q(r) is a totally
imaginary octic field. Here y2 = A2+4. By Eq. (4.11c), if A2+4 is squarefree,
∆(F/Q) = (∆(Q(s, w)/Q))2(A2 + 4)2. Taking A = L2j−1 − 3 makes ε = τ .
Then, refining r ≈ −1 gives, assuming (L2j−1 − 3)2 + 4 is squarefree,

R1 =
1
2

ln(τ) ln2

(
1

154
∆(F/Q)

)(
1 + O (1/ |A|)

)
. (6.6)

Let F be a real cyclic quartic field given by Eq. (6.3a). Using Lemma 4.4(d),
disc(q1(x))disc(q3(x)) = 5(F2j−1 − 2)2. Refining r ≈ −1, and using Proposi-
tion 6.5, we find that if F2j−1 − 2 is squarefree and prime to 10, then

R1 =
1
4

ln(τ) ln2

(
1
52

∆(F/Q)
)(

1 + O
(
1/j2

))
. (6.7)

Replacing F2j−1 − 2 with F2j−1 + 2, and assuming this is squarefree and
prime to 10, we again obtain Eq. (6.7) for the real cyclic quartic fields given
by Eq. (6.4b).

Using Proposition 6.6 and Eq. (4.11c), we obtain an estimate asymptot-
ically equal to that in Eq. (6.7) for the non-normal quartic fields defined by
Eq. (6.1b), taking m = L2j , a Lucas number of even index, if 4L2

2j + 9 is
squarefree.

The regulator estimates in Eqs. (6.6) and (6.7) are comparable to the lower
bound in [35], for totally imaginary octic fields with a real quadratic but not
a real quartic subfield, or for real quartic fields with a quadratic subfield.

We do not know that the squarefreeness conditions are satisfied infinitely
often, but we do not know any reason to assume otherwise. The numbers
F2j−1± 2 are always the product of a Fibonacci number and a Lucas number
whose indexes differ by 3, but the squarefreeness question for these is also
open.

In [41], Washington obtains a lower bound for the regulators of the cyclic
quartic fields defined by ft(x) which proves the system of 3 units he gives is
fundamental when t, t+ 4, and t2 + 4 are squarefree, except when t = 1. The
system in Proposition 6.5 for Pt(x) has the same regulator. In the case t = 1,
the system 〈−1, τ, r, r+ 1〉 for Eqs. (6.4a) and (b) with j = 0 is fundamental.
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7 Concluding remarks

The condition (M) provides a conceptual unification of all families of number
fields previously dubbed “simplest.” It also enabled us to re-derive both the
“simplest” quartic fields and Washington’s cyclic quartic fields by elementary
methods, and to place both families together in a larger context.

For purely algebraic purposes, the substitution A← −(m+ 2)/2 + v used
in the proof of Theorem 4.13 may be useful.

However, more sophisticated methods than used here would surely be re-
quired to construct algebraic maps σ satisfying (M) for n > 4. More powerful
techniques would probably also refine and elaborate some of our results con-
siderably, particularly those in §6.5. Those wanting to to investigate class
number or unit index questions might want to read [8], [9], [17], [26], [12] and
[13] first.

We note that (M) and its σ-conjugates can be viewed as a system of n
constraints which may limit the relative sizes of r, σ(r), . . . , σn−1(r). This
might help account for the previously-noted feature of small regulators in
“simplest” cyclic number fields of low degree. In this regard, the factorization
of the “circulant” matrix determinant (see, for example, Lemma 5.26 in [39])
might be of interest.

We chose the variable names s and w prior to learning about the “sim-
plest” quartic fields or Washington’s cyclic quartic fields. The fact that the
conditions s = 0 and w = 0 turned out to produce the “simplest” quartic
fields and Washington’s cyclic quartic fields respectively, is a coincidence that
absolutely delights the author.

While investigating Eq. (C4), we noticed that f : x 7→ (−x − 1)/(x + u)
has compositional order 10 when u2 + 3u+ 1 = 0. The compositional powers
f (3) and f (7) make (M) a formal identity with n = 10. With K = Q(

√
5),

9∑
k=0

f (k)(x) = 2(A+Bu), A,B ∈ Z

produces a family of totally real C10 extensions of K defined by units whose
conjugates satisfy (M), and which have exceptional sequences of four units.
The normal closure over Q has “generic” Galois group 20T53.
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