2nd Exam for Calculus II 4188

Name : \qquad Student ID \#: \qquad Score : \qquad

1. Find the sum of the following series:
(a) $\sum_{n=0}^{\infty} \frac{4^{n}-13^{n}}{4^{2 n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$
2. Does the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converge? (\#38, page 567)
3. Which of the following series converge absolutely, which converge conditionally, and which diverge?
(a) $\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n}) \quad$ (\#41, page 573$)$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}} \quad$ (\#22, page 573$)$
4. Power Series:
(a) Calculate the radius of convergence for the power series: $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n}$.
(b) Determine the interval of convergence for the power series: $\sum_{n=1}^{\infty} \frac{7^{n}(x-1)^{n}}{\sqrt{n}}$.
5. Applications of the Power Series:
(a) Find the sum of the infinite series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$.
(b) Let $f(x)=\frac{x^{2}}{1-x}$. Calculate its 101st derivative $f^{(101)}(0)$ at 0 .
(c) Use power series to calculate the value of the limit $\lim _{x \rightarrow 0} \frac{x-\arctan x}{x^{3}}$
