2nd Exam for Calculus II 4181

Name : _____ Student ID # : _____ Score : _____

1. Evaluate the following integrals: (6%+10%+10%+8%)

(a)
$$\int \frac{1}{x^2 - 2x + 5} dx$$

(b)
$$\int_0^{1/\sqrt{2}} 2x \arcsin(x^2) dx$$

(c)
$$\int_0^1 \frac{1}{(x+1)(x^2+1)} dx$$

(d)
$$\int_{-\infty}^{\infty} \frac{x}{(x^2+4)^{3/2}} dx$$

2. Which of the following series converge, and which diverge? (5%+5%)

(a)
$$\sum_{n=1}^{\infty} n^3 e^{-n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{n!(n+1)!(n+2)!}$$

- 3. Power Series: (6%+10%+10%)
 - (a) Calculate the radius of convergence for the power series: $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} \, x^n \, .$

(b) Find the Maclaurin series of the function $f(x) = \ln\left(\frac{1+x}{1-x}\right)$.

(c) Determine the interval of convergence for the power series: $\sum_{n=1}^{\infty} \frac{7^n (x-1)^n}{\sqrt{n}}.$

- 4. Applications of the Power Series: (10%+10%+10%)
 - (a) Find the sum of the infinite series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.

(b) Let $f(x) = \frac{x^2}{1-x}$. Calculate its 101^{st} derivative $f^{(101)}(0)$ at 0.

(c) Use power series to calculate the value of the limit $\lim_{x\to 0} \frac{x - \arctan x}{x^3}$