Diagnostic Exam for Business Calculus

1. Which of the following defines a function f for which f(-x) = -f(x)?

(A) $f(x) = x^2$

(B) $f(x) = \sin x$ (C) $f(x) = \cos x$ (D) $f(x) = e^x$

(E) $f(x) = \ln x$

2. ln(x-2) < 0 if and only if

(A) x < 3

(B) 0 < x < 3

(C) 2 < x < 3

(D) x > 2

(E) x > 3

3. If p(x) = (x+2)(x+k) and if the remainder(餘式) is 12 when p(x) is divided by x-1, then k=

(A) 2

(B) 3

(C) 6

(D) 11

(E) 13

4. The set of all points (e^t, t) , where t is a real number, is the graph of y =

(A) $\frac{1}{e^x}$ (B) $e^{\frac{1}{x}}$ (C) $xe^{\frac{1}{x}}$ (D) $\frac{1}{\ln x}$ (E) $\ln x$

(A) $\left\{\frac{1}{3}\right\}$ (B) $\{2\}$ (C) $\{3\}$ (D) $\{-1,2\}$ (E) $\left\{\frac{1}{3},2\right\}$

6. If the function f is defined by $f(x) = x^5 - 1$ then f^{-1} , the inverse function of f is defined by $f^{-1}(x) = x^5 - 1$

(A) $\frac{1}{\sqrt[5]{x}+1}$ (B) $\frac{1}{\sqrt[5]{x}+1}$ (C) $\sqrt[5]{x}-1$ (D) $\sqrt[5]{x}-1$ (E) $\sqrt[5]{x}+1$

7. If $f(x) = x^3 + 3x^2 + 4x + 5$ and g(x) = 5, then g(f(x)) =

(A) $5x^2 + 15x + 25$ (B) $5x^3 + 15x^2 + 20x + 25$ (C) 1125

(D) 225

(E) 5

8. If $f(x) = e^x$, which of the following lines is an asymptote(漸近線) to the graph of f

(A) y = 0 (B) x = 0

(C) y = x (D) y = -x (E) y = 1

9. Which of the following equations has a graph that is symmetric with respect to the origin?

(A) $y = \frac{x+1}{r}$

(B) $y = -x^5 + 3x$ (C) $y = x^4 - 2x^2 + 6$ (D) $y = (x-1)^3 + 1$

(E) $y = (x^2 + 1)^2 - 1$

10. If $f(x) = 2x^3 + Ax^2 + Bx - 5$ and if f(2) = 3 and f(-2) = -37, what is the value of A + B?

 $(A) -6 \qquad (B) -3 \qquad (C) -1$

(D) 2 (E) It cannot be determined from the information given

11.	Let $f(x) =$	$\left \sin x - \frac{1}{2}\right .$	The maximum	value attained	by f is
-----	--------------	--------------------------------------	-------------	----------------	-----------

(A) $\frac{1}{2}$ (B) 1 (C) $\frac{3}{2}$ (D) $\frac{\pi}{2}$ (E) $\frac{3\pi}{2}$

12. The domain(定義域) of the function defined by $f(x) = \ln(x^2 - 4)$ is the set of all real numbers x such

(A) |x| < 2

(B) $|x| \le 2$

(C) |x| > 2

(D) $|x| \ge 2$

(E) x is a real number

13. If $f(x_1) + f(x_2) = f(x_1 + x_2)$ for all real numbers x_1 and x_2 , which of the following could define f?

(A) f(x) = x + 1 (B) f(x) = 2x (C) $f(x) = \frac{1}{x}$ (D) $f(x) = e^x$ (E) $f(x) = x^2$.

14. What is the domain of the function f given by $f(x) = \frac{\sqrt{x^2 - 4}}{x - 3}$

(A) $\{x: x \neq 3\}$ (B) $\{x: |x| \leq 2\}$ (C) $\{x: |x| \geq 2\}$ (D) $\{x: |x| \geq 2$ and $x \neq 3\}$

(E) $\{x: x \geq 2 \text{ and } x \neq 3\}$

15. If $\ln x - \ln(\frac{1}{x}) = 2$, then x =

(A) $\frac{1}{e^2}$ (B) $\frac{1}{e}$ (C) e (D) 2e (E) e^2

16. If the function f is defined by $f(x) = \frac{x}{x+1}$ then the inverse function, f^{-1} , is given by $f^{-1}(x) = \frac{x}{x+1}$

(A) $\frac{x-1}{x}$ (B) $\frac{x+1}{x}$ (C) $\frac{x}{1-x}$ (D) $\frac{x}{x+1}$

(E) x

17. Which of the following does NOT have a period(週期) of π ?

(A) $f(x) = \sin(x/2)$

(B) $f(x) = |\sin x|$ (C) $f(x) = \sin^2 x$ (D) $f(x) = \tan x$

(E) $f(x) = \tan^2 x$

18. $4\cos(x+\frac{\pi}{2}) =$

(A) $2\sqrt{3}\cos x - 2\sin x$

(B) $2\cos x - 2\sqrt{3}\sin x$ (C) $2\cos x + 2\sqrt{3}\sin x$

(D) $2\sqrt{3}\cos x + 2\sin x$

(E) $4\cos x + 2$

19. Let f and g be odd functions (奇函數). If p, r, and s are nonzero functions defined as follows. which must be odd?

I. p(x) = f(g(x))

II r(x) = f(x) + g(x)

III. s(x) = f(x)g(x)

(A) I only (B) II only (C) I and II only

(D) II and III only

(E) I, II, and III

20. If $f(x) = e^x \sin x$, then the number of zeros of f on the closed interval $[0, 2\pi]$ is

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4