微積分 A 預習測驗 $\# \mathbf{1}$

\qquad系級： \qquad學號： \qquad分數： \square
Read Chapter $0-$ A Preview of Calculus（pages 2－9）and answer the following questions．

2．The origins of calculus，go back at least 2500 years to the ancient
 using the method of \square ．

3．Use the above method to find the area A of the region under the graph of $y=x^{2}$ on the interval $[0,1]$ （see Figure 3 of page 3）．
（a）Let A_{n} be the area of the union of the n shaded rectangles appeared in the last picture of page 3 ， then $A_{n}=\square$ ．
（b）The desired area $A=\lim _{n \rightarrow \infty} A_{n}=\square$ ．

4．The area problem is the central problem in the branch of calculus called The technique that we will develop in Chapter 5 for finding areas will also enable us to compute the \square of a solid，the \square of a curve，the \square of a rod，and the \square
a dam，the \square in pumping water out of a tank．

5．The tangent problem has given rise to the branch of calculus called \square was not invented until more than 2000 years after integral calculus．The main ideas behind differential calculus are due to the \square mathematician Pierre Fermat（1601－1665），and were developed
by the \square mathematicians John Wallis（1616－1703），Isaac Barrow（1630－1677），and Isaac
Newton（1642－1627）and the German mathematician Gottfried Leibniz（1646－1716）．

6．The two branches of calculus and their chief problems，The \square problem and the \square problem，appear to be very \square ，but it turns out that there is a very close
 between them．The tangent problem and the area problem are
 that will be described in Chapter 5 ．

