Class : $\qquad$ Name : $\qquad$ Student ID \# : $\qquad$

## Part A Multiple-Choice (100 points=4 points $\times 25$ )

1. $\lim _{x \rightarrow-\infty}\left(\sqrt{9 x^{2}+x}-3 x\right)=$
(A) 0
(B) $-\frac{1}{2}$
(C) $-\frac{1}{6}$
(D) $-\frac{1}{3}$
(E) nonexistent
2. $\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5}=$
(A) 32
(B) 1
(C) $2^{32}$
(D) $32 \ln 2$
(E) nonexistent
3. $\lim _{x \rightarrow 0}(x \csc x)$ is
(A) 0
(B) -1
(C) $-\infty$
(D) 1
(E) $\infty$
4. If $f(x)=e^{1 / x}$, then $f^{\prime}(x)=$
(A) $\frac{e^{1 / x}}{x}$
(B) $-e^{1 / x}$
(C) $-\frac{e^{1 / x}}{x^{2}}$
(D) $\frac{e^{1 / x}}{x^{2}}$
(E) $\frac{1}{x} e^{(1 / x)-1}$
5. If $y=\frac{1}{x}$, then $y^{(n)}=$
(A) $(-1)^{n} \frac{1}{x^{n}}$
(B) $\frac{1}{x^{n}}$
(C) $(-1)^{n} \frac{1}{x^{n+1}}$
(D) $(-1)^{n} \frac{1}{x^{n-1}}$
(E) none of the above
6. If $y=\frac{x}{e^{x}}$, then $y^{(n)}=$
(A) $(-1)^{n} \frac{x}{e^{x}}$
(B) $(-1)^{n} \frac{x-n}{e^{x}}$
(C) $(-1)^{n} \frac{n-x}{e^{x}}$
(D) $\frac{0}{e^{x}}$
(E) none of the above
7. $\int_{0}^{1} \sqrt{x}(x+1) d x=$
(A) $\frac{16}{15}$
(B) 0
(C) 1
(D) 2
(E) $\frac{7}{5}$
8. $\int_{0}^{3} \sqrt{1+x} d x=$
(A) $\frac{21}{2}$
(B) 7
(C) $\frac{16}{3}$
(D) $\frac{14}{3}$
(E) $-\frac{1}{4}$
9. $\int_{-1}^{2} \frac{|x|}{x} d x=$
(A) -3
(B) 1
(C) 2
(D) 3
(E) nonexistent
10. If $n$ is a known positive integer, for what value of $k$ is $\int_{1}^{k} x^{n-1} d x=\frac{1}{n}$ ?
(A) 0
(B) $\left(\frac{2}{n}\right)^{1 / n}$
(C) $\left(\frac{2 n-1}{n}\right)^{1 / n}$
(D) $2^{1 / n}$
(E) $2^{n}$
11. The area of the region bounded by the lines $x=0, x=2, y=0$, and the curve $y=e^{x / 2}$ is
(A) $\frac{e-1}{2}$
(B) $e-1$
(C) $2(e-1)$
(D) $2 e-1$
(E) $2 e$
12. $\int_{0}^{1}(1+x) e^{x^{2}+2 x} d x=$
(A) $\frac{e^{3}}{2}$
(B) $\frac{e^{3}-1}{2}$
(C) $\frac{e^{4}-e}{2}$
(D) $e^{3}-1$
(E) $e^{4}-e$
13. $\lim _{h \rightarrow 0} \frac{1}{h} \ln \left(\frac{2+h}{2}\right)=$
(A) $e^{2}$
(B) 1
(C) $\frac{1}{2}$
(D) 0
(E) nonexistent
14. $\int_{0}^{\pi / 4} \tan ^{2} x d x=$
(A) $\frac{\pi}{4}-1$
(B) $1-\frac{\pi}{4}$
(C) $\frac{1}{3}$
(D) $\sqrt{2}-1$
(E) $\frac{\pi}{4}+1$
15. Which of the following is true about the graph of $y=\ln \left|x^{2}-1\right|$ in the interval $(-1,1)$ ?
(A) It is increasing.
(B) It attains a relative minimum at $(0,0)$.
(C) It has a range of all real numbers.
(D) It is concave down.
(E) It has an asymptote of $x=0$.
16. $\int_{1}^{2} \frac{x-4}{x^{2}} d x=$
(A) $-\frac{1}{2}$
(B) $\ln 2-2$
(C) $\ln 2$
(D) 2
(E) $\ln 2+2$
17. If $f(x)=\frac{1}{3} x^{3}-4 x^{2}+12 x-5$ and the domain is the set of all $x$ such that $0 \leq x \leq 9$, then the absolute maximum value of the function $f$ occurs when $x$ is
(A) 0
(B) 2
(C) 4
(D) 6
(E) 9
18. If $f(x)=\ln (\ln x)$, then $f^{\prime}(x)=$
(A) $\frac{1}{x \ln x}$
(B) $\frac{1}{\ln x}$
(C) $\frac{\ln x}{x}$
(D) $x$
(E) $\frac{1}{x}$
19. If $f(x)=(x-1)^{3 / 2}+\frac{e^{x-2}}{2}$, then $f^{\prime}(2)=$
(A) 1
(B) $\frac{3}{2}$
(C) 2
(D) $\frac{7}{2}$
(E) $\frac{3+e}{2}$
20. Let $f$ and $g$ be differentiable functions such that $f(1)=2=g(1), \quad f^{\prime}(1)=3=-g^{\prime}(1)$, $f^{\prime}(2)=-4, \quad g^{\prime}(2)=5$. Then $(f \circ g)^{\prime}(1)=$
(A) -4
(B) 0
(C) -9
(D) 12
(E) 15
21. $\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(2 x)}{x^{2}}=$
(A) -2
(B) 0
(C) 1
(D) 2
(E) 4
22. $\int_{1}^{2} f(x-c) d x=5$ where $c$ is a constant, then $\int_{1-c}^{2-c} f(x) d x=$
(A) $5+c$
(B) 5
(C) $5-c$
(D) $c-5$
(E) -5
23. If $f$ is the solution of $x f^{\prime}(x)-f(x)=x$ such that $f(-1)=1$, then $f\left(e^{-1}\right)=$
(A) $-2 e^{-1}$
(B) 0
(C) $e^{-1}$
(D) $-e^{-1}$
(E) $2 e^{-2}$
24. If $f$ is continuous on $[a, b]$ and differentiable for $a<x<b$, which of the following could be false?
(A) $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ for some $c \in(a, b)$.
(B) $f^{\prime}(c)=0$ for some $c \in(a, b)$.
(C) $f$ has a minimum value on $[a, b]$.
(D) $f$ has a maximum value on $[a, b]$.
(E) $\int_{a}^{b} f(x) d x$ exists.
25. Suppose that $g^{\prime}(x)<0$ for all $x \geq 0$ and $F(x)=\int_{0}^{x} t g^{\prime}(t) d t$ for all $x \geq 0$.

Which of the following statement is FALSE?
(A) $F$ takes on negative values.
(B) $F$ is continuous for all $x>0$.
(C) $F(x)=x g(x)-\int_{0}^{x} g(t) d t$
(D) $F^{\prime}$ exists for all $x>0$.
(E) $F$ is an increasing function.

Part B (25 points) Consider the function $f$ given by $f(x)=\frac{2 x}{\sqrt{x^{2}+x+1}}$.

1. Write an equation for each horizontal asymptote of the graph of $f$.
2. Write an expression for $f^{\prime}(x)$, and use to find the relative extremum value(s) of $f$.
3. Write an expression for $f^{\prime \prime}(x)$, and use to find the inflection point(s) of $f$.
4. Sketch the graph of $f$.
5. Find the range of $f$. Use $f^{\prime}(x)$ to justify your answer.
