Calculus-A Pre-Midterm Exam for STAT

Class : \qquad Name : \qquad Student ID \#: \qquad

100 Minutes-No Calculator. 5 points for each question.

Part A Multiple-Choice

1. If $f(x)=\left\{\begin{array}{ll}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{array}\right.$ and if f is continuous on $(-\infty, \infty)$. Then $c=$
(A) 0
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) 1
(E) $\frac{2}{3}$
2. $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+x}-3 x\right)=$
(A) 0
(B) $\frac{1}{2}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
(E) nonexistent
3. Which of the following is false about the graph of $f(x)=x^{4}-2 x^{2}$?
(A) It is increasing on the interval $[-1,0]$.
(B) It attains a relative minimum at 0 .
(C) It is concave up on the interval $[2,5]$.
(D) It is concave down on the interval $[-0.5,0.5]$.
(E) It is decreasing on the interval $[0,1]$.
4. If $f(x)=e^{1 / x}$, then $f^{\prime}(x)=$
(A) $-\frac{e^{1 / x}}{x^{2}}$
(B) $-e^{1 / x}$
(C) $\frac{e^{1 / x}}{x}$
(D) $\frac{e^{1 / x}}{x^{2}}$
(E) $\frac{1}{x} e^{(1 / x)-1}$
5. $\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5}=$
(A) 32
(B) $32 \ln 2$
(C) 2^{32}
(D) 1
(E) nonexistent
6. $\lim _{x \rightarrow 0}(x \csc x)$ is
(A) $-\infty$
(B) -1
(C) 0
(D) 1
(E) ∞
7. If $y=\sin x$, then the smallest positive integer n for which $y^{(n)}=y$ is
(A) 2
(B) 4
(C) 5
(D) 6
(E) 8
8. If $y=\frac{1}{x}$, then $y^{(n)}=$
(A) $\frac{1}{x^{n}}$
(B) $(-1)^{n} \frac{1}{x^{n}}$
(C) $(-1)^{n} \frac{1}{x^{n+1}}$
(D) $(-1)^{n} \frac{1}{x^{n-1}}$
(E) none of the above
9. If $y=\frac{x}{e^{x}}$, then $y^{(n)}=$
(A) $\frac{0}{e^{x}}$
(B) $(-1)^{n} \frac{x-n}{e^{x}}$
(C) $(-1)^{n} \frac{n-x}{e^{x}}$
(D) $(-1)^{n} \frac{x}{e^{x}}$
(E) none of the above
10. $\lim _{h \rightarrow 0} \frac{1}{h} \ln \left(\frac{2+h}{2}\right)=$
(A) e^{2}
(B) 1
(C) $\frac{1}{2}$
(D) 0
(E) nonexistent
11. The graph of $y=5 x^{4}-x^{5}$ has a point of inflection at
(A) $(0,0)$ only
(B) $(3,162)$ only
(C) $(4,256)$ only
(D) $(0,0)$ and $(3,162)$
(E) $(0,0)$ and $(4,256)$
12. If $f(x)=2+|x-3|$ for all x, then the value of the derivative $f^{\prime}(x)$ at $x=3$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) Nonexistent
13. If $f(x)=\frac{1}{3} x^{3}-4 x^{2}+12 x-5$ and the domain is the set of all x such that $0 \leq x \leq 9$, then the absolute maximum value of the function f occurs when x is
(A) 0
(B) 2
(C) 4
(D) 6
(E) 9
14. If $f(x)=\ln (\ln x)$, then $f^{\prime}(x)=$
(A) $\frac{1}{x}$
(B) $\frac{1}{\ln x}$
(C) $\frac{\ln x}{x}$
(D) x
(E) $\frac{1}{x \ln x}$
15. The absolute maximum value of $f(x)=x^{3}-3 x^{2}+12$ on the closed interval $[-2,4]$ occurs at $x=$
(A) 2
(B) 4
(C) 1
(D) 0
(E) -2
16. Suppose that f is an odd function; i.e., $f(-x)=-f(x)$ for all x. Suppose that $f^{\prime}\left(x_{0}\right)$ exists.

Which of the following must necessarily be equal to $f^{\prime}\left(-x_{0}\right)$?
(A) $f^{\prime}\left(x_{0}\right)$
(B) $-f^{\prime}\left(x_{0}\right)$
(C) $\frac{1}{f^{\prime}\left(x_{0}\right)}$
(D) $-\frac{1}{f^{\prime}\left(x_{0}\right)}$
(E) None of the above
17. Let f and g be differentiable functions such that $f(1)=2=g(1), \quad f^{\prime}(1)=3=-g^{\prime}(1)$,
$f^{\prime}(2)=-4, \quad g^{\prime}(2)=5$. Then $(f \circ g)^{\prime}(1)=$
(A) -9
(B) -4
(C) 0
(D) 12
(E) 15
18. The tangent line to the curve $y=x \sqrt{x}$ that is parallel to the line $y=1+3 x$ has an equation
(A) $y=3 x+4$
(B) $y=3 x-4$
(C) $y=3 x+20$
(D) $y=3 x-20$
(E) none of the above
19. What is $\lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h}$?
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) The limit does not exist
(E) It can not be determined from the information given
20. For what value of k will $x+\frac{k}{x}$ have a relative maximum at $x=-2$?
(A) -4
(B) -2
(C) 2
(D) 4
(E) None of the above

Part B Free-Response Question

Consider the following function f

$$
f(x)=\frac{x(1-x)(2-x)(3-x)(4-x)(5-x)(6-x)(7-x)(8-x)(9-x)}{(1+x)(2+x)(3+x)(4+x)(5+x)(6+x)(7+x)(8+x)(9+x)} .
$$

Find the derivative of f at $x=0$,
(a) by the definition of $f^{\prime}(0)$;
(b) by any of the differentiation rules.

