Calculus-A Pre-Midterm Exam for STAT

10/19/2012

Class : _____ Name : ____ Student ID # : _____

100 Minutes-No Calculator. 5 points for each question.

Part A Multiple-Choice

- 1. If $f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2 \\ x^3 cx & \text{if } x \ge 2 \end{cases}$ and if f is continuous on $(-\infty, \infty)$. Then $c = (-\infty, \infty)$
 - (A) 0 (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) 1 (E) $\frac{2}{3}$
- 2. $\lim_{x \to \infty} (\sqrt{9x^2 + x} 3x) =$ (A) 0 (B) $\frac{1}{2}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$ (E) nonexistent
- 3. Which of the following is false about the graph of $f(x) = x^4 2x^2$?
 - (A) It is increasing on the interval [-1, 0].
 - (B) It attains a relative minimum at 0.
 - (C) It is concave up on the interval [2, 5].
 - (D) It is concave down on the interval [-0.5, 0.5].
 - (E) It is decreasing on the interval [0,1].
- 4. If $f(x) = e^{1/x}$, then f'(x) = $(A) \frac{e^{1/x}}{x^2} \qquad (B) e^{1/x} \qquad (C) \frac{e^{1/x}}{x} \qquad (D) \frac{e^{1/x}}{x^2} \qquad (E) \frac{1}{x} e^{(1/x)-1}$
- 5. $\lim_{x \to 5} \frac{2^x 32}{x 5} =$ (A) 32 (B) 32 ln 2 (C) 2^{32} (D) 1 (E) nonexistent
- 6. $\lim_{x\to 0} (x \csc x)$ is (A) $-\infty$ (B) -1 (C) 0 (D) 1 (E) ∞
- 7. If $y = \sin x$, then the smallest positive integer n for which $y^{(n)} = y$ is
 - (A) 2 (B) 4 (C) 5 (D) 6 (E) 8

- 8. If $y = \frac{1}{x}$, then $y^{(n)} =$

- (A) $\frac{1}{x^n}$ (B) $(-1)^n \frac{1}{x^n}$ (C) $(-1)^n \frac{1}{x^{n+1}}$ (D) $(-1)^n \frac{1}{x^{n-1}}$ (E) none of the above
- 9. If $y = \frac{x}{e^x}$, then $y^{(n)} =$

- (A) $\frac{0}{e^x}$ (B) $(-1)^n \frac{x-n}{e^x}$ (C) $(-1)^n \frac{n-x}{e^x}$ (D) $(-1)^n \frac{x}{e^x}$ (E) none of the above
- 10. $\lim_{h\to 0} \frac{1}{h} \ln(\frac{2+h}{2}) =$

- (A) e^2 (B) 1 (C) $\frac{1}{2}$ (D) 0 (E) nonexistent
- 11. The graph of $y = 5x^4 x^5$ has a point of inflection at

- (A) (0,0) only (B) (3,162) only (C) (4,256) only (D) (0,0) and (3,162) (E) (0,0) and (4,256)
- 12. If f(x) = 2 + |x 3| for all x, then the value of the derivative f'(x) at x = 3 is

- (A) -1 (B) 0 (C) 1 (D) 2 (E) Nonexistent
- 13. If $f(x) = \frac{1}{3}x^3 4x^2 + 12x 5$ and the domain is the set of all x such that $0 \le x \le 9$, then the absolute maximum value of the function f occurs when x is
 - (A) 0
- (B) 2
- (C) 4
- (D) 6
- 14. If $f(x) = \ln(\ln x)$, then f'(x) =

- (A) $\frac{1}{x}$ (B) $\frac{1}{\ln x}$ (C) $\frac{\ln x}{x}$ (D) x (E) $\frac{1}{x \ln x}$
- 15. The absolute maximum value of $f(x) = x^3 3x^2 + 12$ on the closed interval [-2, 4] occurs at x = 1
 - (A) 2
- (B) 4
- (C) 1
- (D) 0 (E) -2
- 16. Suppose that f is an odd function; i.e., f(-x) = -f(x) for all x. Suppose that $f'(x_0)$ exists.
 - Which of the following must necessarily be equal to $f'(-x_0)$?

- (A) $f'(x_0)$ (B) $-f'(x_0)$ (C) $\frac{1}{f'(x_0)}$ (D) $-\frac{1}{f'(x_0)}$ (E) None of the above

17. Let f and g be differentiable functions such that f(1) = 2 = g(1), f'(1) = 3 = -g'(1),

f'(2) = -4, g'(2) = 5. Then $(f \circ g)'(1) =$

(A) -9

(B) -4

(C) 0

(D) 12

(E) 15

18. The tangent line to the curve $y = x\sqrt{x}$ that is parallel to the line y = 1 + 3x has an equation

(A) y = 3x + 4 (B) y = 3x - 4 (C) y = 3x + 20 (D) y = 3x - 20

(E) none of the above

19. What is $\lim_{h\to 0} \frac{8(\frac{1}{2}+h)^8-8(\frac{1}{2})^8}{h}$?
(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) The limit does not exist

(E) It can not be determined from the information given

20. For what value of k will $x+\frac{k}{x}$ have a relative maximum at x=-2? (A) -4 (B) -2 (C) 2 (D) 4 (E) None of the above

Part B Free-Response Question

Consider the following function f

$$f(x) = \frac{x(1-x)(2-x)(3-x)(4-x)(5-x)(6-x)(7-x)(8-x)(9-x)}{(1+x)(2+x)(3+x)(4+x)(5+x)(6+x)(7+x)(8+x)(9+x)}.$$

Find the derivative of f at x = 0,

(a) by the definition of f'(0);

(b) by any of the differentiation rules.