Algebra Homework #6(due 11/07/2012)

Name: ______ Class: _____ Student I.D. #_____

1. Let G be a cyclic group and H a subgroup of G. Show that G/H is cyclic.

- 2. Let $G = \mathbb{Z}/12\mathbb{Z}$ and $K = <4 + 12\mathbb{Z} >$.
 - (a) Show that G/K is isomorphic to $\mathbb{Z}/4\mathbb{Z}$.

(b) Find all subgroups H of G containing K.

- 3. True or false with reasons.
 - (a) If [a] = [b] in \mathbb{I}_m , then a = b in \mathbb{Z} .
 - (b) There is a homomorphism $\mathbb{I}_m \to \mathbb{Z}$ defined by $[a] \longmapsto a$.
 - (c) If a = b in \mathbb{Z} , then [a] = [b] in \mathbb{I}_m .
 - (d) If G is a group and $K \triangleleft G$, then there is a homomorphism $G \rightarrow G/K$ having kernel K.
 - (e) If G is a group and $K \triangleleft G$, then every homomorphism $G \rightarrow G/K$ has kernel K.
 - (f) Every quotient group of an abelian group is abelian.
 - (g) If G and H are abelian groups, then $G \times H$ is an abelian group.
 - (h) If G and H are cyclic groups, then $G \times H$ is an cyclic group.
 - (i) If every subgroup of a group G is a normal subgroup, then G is abelian.
 - (j) If G is a group, then $\{1\} \triangleleft G$ and $G/\{1\} \cong G$.

4. Find all subgroups of $(\mathbb{Z}/p^2\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$, where p is a prime. List them according to their orders.

5. Classify all abelian groups of order 400.

- 6. Let G be an abelian group of order mn, where m and n are coprime integers. Let H = {g ∈ G : g^m = e} and K = {g ∈ G : gⁿ = e}. Prove (a) and (b) below WITHOUT using the fundamental theorem of finite abelian groups.
 - (a) H and K are subgroups of G with intersection $\{e\}$.

(b) G = H × K. (Hint: Show G = HK then apply prop.. Let g be an element in G. Write the order of g as m'n', where m'|m and n'|n. Show that g^{m'} lies in K and g^{n'} lies in H, and manage to conclude g in HK from here.)