Algebra Homework \#5(due 10/26/2012)

Name: \qquad Class: \qquad Student I.D. \# \qquad

1. Let B be the set of upper triangular matrices in $\mathrm{GL}(2, \mathbb{Q}), T$ be the set of diagonal matrices, and U be the set of matrices in B with diagonal entries 1 .
(a) Show that B, T, U are subgroups of $\mathrm{GL}(2, \mathbb{Q})$.
(b) Show that U is normal in B, but not normal in $\operatorname{GL}(2, \mathbb{Q})$.
(c) Show that $B=T U$.
(d) Show that the quotient group B / U is isomorphic to T.
2. Let G be a group of order 4. Show that either G is cyclic or $G=\{e, a, b, a b\}$, where a, b and $a b$ all have order 2. Conclude that G is abelian.
3. Find all noncyclic order 4 subgroups of S_{4}. Which of these are normal in S_{4} ? Give reasons.
4. Let $G=(\mathbb{Z} / m n \mathbb{Z},+)$, where m and n are coprime integers. Let $H=\{h \in G$: order h divides $m\}$ and $K=\{k \in G:$ order k divides $n\}$.
(a) Show that the intersection of H and K is $\{0\}$.
(b) Show that $H+K=G$.
(c) Show that G / H is isomorphic to K and G / K is isomorphic to H.
(d) Show that H is isomorphic to $\mathbb{Z} / m \mathbb{Z}$ and K isomorphic to $\mathbb{Z} / n \mathbb{Z}$.
