Algebra Homework $#4(due \ 10/19/2012)$

Name: ____

_____ Class: _____ Student I.D. #_____

- 1. Let H be a subgroup of the group G, and let g be any element of G.
 - (a) Show that gHg^{-1} is a subgroup of G.

(b) Show that gHg^{-1} is isomorphic to H.

(c) Show that the intersection of gHg^{-1} over all elements g of G is the largest subgroup of H normal in G.

2. Show that the center Z(G) of the group G is an abelian subgroup.

- 3. Let $\langle a \rangle$ be a cyclic subgroup. Show that
 - (a) given any integer k, the map $f(x) = x^k$ is a homomorphism from $\langle a \rangle$ to itself;

(b) f is an isomorphism of $\langle a \rangle$ if and only if a^k is a generator of $\langle a \rangle$.

4. Show that groups $A = <(1\ 2\ 3\ 4) >$ and $B = \{e, (1\ 2), (3\ 4), (1\ 2)(3\ 4)\}$ are not isomorphic.

5. Consider the group $(\mathbb{Z}, *)$ in HW1#3. Is it isomorphic to $(\mathbb{Z}, +)$?

6. Find the center of $GL(2,\mathbb{Q})$.

- 7. True or false with reasons.
 - (a) If G and H are additive groups, then every homomorphism $f : G \to H$ satisfies f(x + y) = f(x) + f(y) for all $x, y \in G$.
 - (b) A function $f : \mathbb{R} \to \mathbb{R}^{\times}$ is a homomorphism if and only if f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (c) The inclusion $\mathbb{Z} \to \mathbb{R}$ is a homomorphism of additive groups.
 - (d) The subgroup $\{0\}$ of \mathbb{Z} is isomorphic to the subgroup $\{(1)\}$ of S_5 .
 - (e) Any two finite groups of the same order are isomorphic.
 - (f) If p is a prime, any two groups of order p are isomorphic.
 - (g) The subgroup $\langle (1 \ 2) \rangle$ is a normal subgroup of S_3 .
 - (h) The subgroup $\langle (1 \ 2 \ 3) \rangle$ is a normal subgroup of S_3 .
 - (i) If G is a group, then Z(G) = G if and only if G is abelian.
 - (j) The 3-cycles (7 6 5) and (5 26 34) are conjugate in S_{100} .