Algebra Homework $#3(due \ 10/12/2012)$

Name: _____ Class: _____ Student I.D. # _____

- 1. True or false with reasons.
 - (a) If $\sigma \in S_6$, then $\sigma^n = 1$ for some $n \ge 1$.
 - (b) If $\alpha, \beta \in S_n$, then $\alpha\beta$ is an abbreviation for $\alpha \circ \beta$.
 - (c) If α, β are cycles in S_n , then $\alpha\beta = \beta\alpha$.
 - (d) If σ, τ are r-cycles in S_n , then $\sigma \tau$ is an r-cycle.
 - (e) If $\sigma \in S_n$ is an r-cycle, then $\alpha \sigma \alpha^{-1}$ is an r-cycle for every $\alpha \in S_n$.
 - (f) Every transposition is an even permutation.
 - (g) If a permutation α is a product of 3 transpositions, then it cannot be a product of 4 transpositions.
 - (h) If a permutation α is a product of 3 transpositions, then it cannot be a product of 5 transpositions.
 - (i) If $\sigma \alpha \sigma^{-1} = \omega \alpha \omega^{-1}$, then $\sigma = \omega$.
- 2. Let H and K be two subgroups of the group G. Show that the intersection of H and K is also a subgroup of G.

3. Let $G = \langle a \rangle$ be a cyclic group of order 12. List all subgroups of G. For each group, find all generators.

4. Let $G = \langle a \rangle$ be a cyclic group of infinite order. Find all subgroups of G. For each subgroup, find all generators.

- 5. Let a be an element of order n in the group G.
 - (a) Show that if $a^k = e$, then *n* divides *k*.

(b) Show that for any integer k > 1, the order of the cyclic group $\langle a^k \rangle$ is $\frac{n}{\gcd(k,n)}$.

6. Show that an index 2 subgroup H of the group G is normal in G.

- 7. True or false with reasons. Here, G is always a group.
 - (a) The empty set ϕ is a subgroup of G.
 - (b) If G is a finite group and m is a divisor of |G|, then G contains an element of order m.
 - (c) Every subgroup of S_n has order dividing n!.
 - (d) If H is a subgroup of G, then the intersection of two (left)cosets of H is a (left)coset of H.
 - (e) The intersection of two cyclic subgroups of G is a cyclic subgroup.
 - (f) If X is a finite subset of G, then $\langle X \rangle$ is a finite subgroup.
 - (g) If X is an infinite set, then $F = \{ \sigma \in S_X : \sigma \text{ moves only finitely many elements of } X \}$ is a subgroup of S_X .
 - (h) Every proper subgroup of S_3 is cyclic.
 - (i) Every proper subgroup of S_4 is cyclic.