Algebra Homework \#3(due 10/12/2012)

Name: \qquad Class: \qquad Student I.D. \# \qquad

1. True or false with reasons.
(a) If $\sigma \in S_{6}$, then $\sigma^{n}=1$ for some $n \geq 1$.
(b) If $\alpha, \beta \in S_{n}$, then $\alpha \beta$ is an abbreviation for $\alpha \circ \beta$.
(c) If α, β are cycles in S_{n}, then $\alpha \beta=\beta \alpha$.
(d) If σ, τ are r-cycles in S_{n}, then $\sigma \tau$ is an r-cycle.
(e) If $\sigma \in S_{n}$ is an r-cycle, then $\alpha \sigma \alpha^{-1}$ is an r-cycle for every $\alpha \in S_{n}$.
(f) Every transposition is an even permutation.
(g) If a permutation α is a product of 3 transpositions, then it cannot be a product of 4 transpositions.
(h) If a permutation α is a product of 3 transpositions, then it cannot be a product of 5 transpositions.
(i) If $\sigma \alpha \sigma^{-1}=\omega \alpha \omega^{-1}$, then $\sigma=\omega$.
2. Let H and K be two subgroups of the group G. Show that the intersection of H and K is also a subgroup of G.
3. Let $G=<a>$ be a cyclic group of order 12. List all subgroups of G. For each group, find all generators.
4. Let $G=<a>$ be a cyclic group of infinite order. Find all subgroups of G. For each subgroup, find all generators.
5. Let a be an element of order n in the group G.
(a) Show that if $a^{k}=e$, then n divides k.
(b) Show that for any integer $k>1$, the order of the cyclic group $<a^{k}>$ is $\frac{n}{\operatorname{gcd}(k, n)}$.
6. Show that an index 2 subgroup H of the group G is normal in G.
7. True or false with reasons. Here, G is always a group.
(a) The empty set ϕ is a subgroup of G.
(b) If G is a finite group and m is a divisor of $|G|$, then G contains an element of order m.
(c) Every subgroup of S_{n} has order dividing n !.
(d) If H is a subgroup of G, then the intersection of two (left)cosets of H is a (left)coset of H.
(e) The intersection of two cyclic subgroups of G is a cyclic subgroup.
(f) If X is a finite subset of G, then $\langle X\rangle$ is a finite subgroup.
(g) If X is an infinite set, then $F=\left\{\sigma \in S_{X}: \sigma\right.$ moves only finitely many elements of $\left.X\right\}$ is a subgroup of S_{X}.
(h) Every proper subgroup of S_{3} is cyclic.
(i) Every proper subgroup of S_{4} is cyclic.
