Algebra Homework $\#1(due \ 09/28/2012)$

Name: ______ Class: _____ Student I.D. # _____

Read 數學傳播第36卷第2期「抽象代數」真的抽象嗎?(上) and work out the following problems.

1. (a) Find the groups A and B of isometries of a square and a tetrahedron, resp.

(b) Are the two groups the same? If not, exhibit one element which lies in A but not in B, and conversely, in B but not in A.

- 2. True or false with reasons.
 - (i) The function $e: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, defined by $e(m, n) = m^n$, is an associative operation.

(ii) Every group is abelian.

- (iii) The set of all positive real numbers is a group under multiplication.
- (iv) The set of all positive real numbers is a group under addition.
- (v) For all $a, b \in G$, where G is a group, $aba^{-1}b^{-1} = 1$.

(vi) If $a, b \in G$, where G is a group, then $(ab)^n = a^n b^n$ for all $n \in \mathbb{N}$.

(vii) Every infinite group contains an element of infinite order.

Define a new binary operator * on the set of integers Z by x * y = x + y + 2. Show that (Z, *) is a group.

Let GL(2, ℝ) be the set of all invertible 2 × 2 matrices with real entries. Show that under the matrix multiplication GL(2, ℝ) is a nonabelian group.

5. Classify all cyclic subgroups of $(\mathbb{Z}/8\mathbb{Z}, +)$ and (S^1, \cdot) , where S^1 is the set of complex numbers with absolute value 1 and \cdot is multiplication of complex numbers.

6. Show that each element in a group has a unique inverse.