Algebra Homework $\# 1($ due $09 / 28 / 2012)$

Name： \qquad Class： \qquad Student I．D．\＃ \qquad

Read 數學傳播第 36 卷第 2 期「抽象代數」真的抽象嗎？（上）and work out the following problems．

1．（a）Find the groups A and B of isometries of a square and a tetrahedron，resp．
（b）Are the two groups the same？If not，exhibit one element which lies in A but not in B ， and conversely，in B but not in A ．
2. True or false with reasons.
(i) The function $e: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, defined by $e(m, n)=m^{n}$, is an associative operation.
(ii) Every group is abelian.
(iii) The set of all positive real numbers is a group under multiplication.
(iv) The set of all positive real numbers is a group under addition.
(v) For all $a, b \in G$, where G is a group, $a b a^{-1} b^{-1}=1$.
(vi) If $a, b \in G$, where G is a group, then $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{N}$.
(vii) Every infinite group contains an element of infinite order.
3. Define a new binary operator $*$ on the set of integers \mathbb{Z} by $x * y=x+y+2$. Show that $(\mathbb{Z}, *)$ is a group.
4. Let $\operatorname{GL}(2, \mathbb{R})$ be the set of all invertible 2×2 matrices with real entries. Show that under the matrix multiplication $\mathrm{GL}(2, \mathbb{R})$ is a nonabelian group.
5. Classify all cyclic subgroups of $(\mathbb{Z} / 8 \mathbb{Z},+)$ and $\left(S^{1}, \cdot\right)$, where S^{1} is the set of complex numbers with absolute value 1 and \cdot is multiplication of complex numbers.
6. Show that each element in a group has a unique inverse.

