Class:

Name : _____ Student ID # : _____

This exam is closed-book, closed-notes. Show all your work in order to receive partial or full

credit. The exam is worth 200 points. You have 100 minutes to finish the exam.

- 1. True or false with reasons, 5 points each. You may quote statements proved in class or in the textbook, or from homework assignments.
 - (a) The set of all positive real numbers is a group under multiplication.
 - (b) The set of all positive real numbers is a group under addition.
 - (c) If $a, b \in G$, where G is a group, then $(ab)^n = a^n b^n$ for all $n \in \mathbb{N}$.
 - (d) If $\sigma \in S_6$, then $\sigma^n = 1$ for some $n \ge 1$.
 - (e) If α, β are cycles in S_n , then $\alpha\beta = \beta\alpha$.
 - (f) If σ, τ are r-cycles in S_n , then $\sigma\tau$ is an r-cycle.
 - (g) If $\sigma \in S_n$ is an r-cycle, then $\alpha \sigma \alpha^{-1}$ is an r-cycle for every $\alpha \in S_n$.
 - (h) An abelian group of order 4 is cyclic.
 - (i) If G is a finite group and m is a divisor of |G|, then G contains an element of order m.
 - (j) Every subgroup of S_n has order dividing n!.
 - (k) The intersection of two cyclic subgroups of G is a cyclic subgroup.
 - (1) If X is a finite subset of G, then $\langle X \rangle$ is a finite subgroup.
 - (m) If X is an infinite set, then $F = \{ \sigma \in S_X : \sigma \text{ moves only finitely many elements of } X \}$ is a subgroup of S_X .

- (n) Every proper subgroup of S_3 is cyclic.
- (o) The subgroup $\{0\}$ of \mathbb{Z} is isomorphic to the subgroup $\{(1)\}$ of S_5 .
- (p) If p is a prime, any two groups of order p are isomorphic.
- (q) The subgroup $\langle (1 \ 2) \rangle$ is a normal subgroup of S_3 .
- (r) The 3-cycles (7 6 5) and (5 26 34) are conjugate in S_{100} .
- 2. Define a new binary operator * on the integers \mathbb{Z} by x * y = x + y + 7.
 - (a) Show that $(\mathbb{Z}, *)$ is a group.

(b) Is it isomorphic to $(\mathbb{Z}, +)$?

- 3. Let a be an element of order n in the group G.
 - (a) Show that if $a^k = e$, then *n* divides *k*.

(b) Show that for any integer k > 1, the order of the cyclic group $\langle a^k \rangle$ is $\frac{n}{\gcd(k,n)}$.

4. Show that if every element x in a group is its own inverse then it is abelian.

- 5. Let $G = (\mathbb{Z}/mn\mathbb{Z}, +)$, where m and n are coprime integers. Let $H = \{h \in G : \text{ order } h \text{ divides } m\}$ and $K = \{k \in G : \text{ order } k \text{ divides } n\}$.
 - (a) Show that the intersection of H and K is $\{0\}$.

(b) Show that H + K = G.

- 6. Let B be the set of upper triangular matrices in $GL(2, \mathbb{Q})$, T be the set of diagonal matrices, and
 - U be the set of matrices in B with diagonal entries 1.
 - (a) Show that B, T, U are subgroups of $GL(2, \mathbb{Q})$.

(b) Show that U is normal in B, but not normal in $\operatorname{GL}(2,\mathbb{Q})$.

(c) Show that B = TU.

(d) Show that the quotient group B/U is isomorphic to T.