Algebra Mid-term Exam

Class : \qquad Name : \qquad Student ID \# : \qquad

This exam is closed-book, closed-notes. Show all your work in order to receive partial or full credit. The exam is worth 200 points. You have 100 minutes to finish the exam.

1. True or false with reasons, 5 points each. You may quote statements proved in class or in the textbook, or from homework assignments.
(a) The set of all positive real numbers is a group under multiplication.
(b) The set of all positive real numbers is a group under addition.
(c) If $a, b \in G$, where G is a group, then $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{N}$.
(d) If $\sigma \in S_{6}$, then $\sigma^{n}=1$ for some $n \geq 1$.
(e) If α, β are cycles in S_{n}, then $\alpha \beta=\beta \alpha$.
(f) If σ, τ are r-cycles in S_{n}, then $\sigma \tau$ is an r-cycle.
(g) If $\sigma \in S_{n}$ is an r-cycle, then $\alpha \sigma \alpha^{-1}$ is an r-cycle for every $\alpha \in S_{n}$.
(h) An abelian group of order 4 is cyclic.
(i) If G is a finite group and m is a divisor of $|G|$, then G contains an element of order m.
(j) Every subgroup of S_{n} has order dividing n !.
(k) The intersection of two cyclic subgroups of G is a cyclic subgroup.
(l) If X is a finite subset of G, then $\langle X\rangle$ is a finite subgroup.
(m) If X is an infinite set, then $F=\left\{\sigma \in S_{X}: \sigma\right.$ moves only finitely many elements of $\left.X\right\}$ is a subgroup of S_{X}.
(n) Every proper subgroup of S_{3} is cyclic.
(o) The subgroup $\{0\}$ of \mathbb{Z} is isomorphic to the subgroup $\{(1)\}$ of S_{5}.
(p) If p is a prime, any two groups of order p are isomorphic.
(q) The subgroup $<(12)>$ is a normal subgroup of S_{3}.
(r) The 3-cycles (765) and (5 2634) are conjugate in S_{100}.
2. Define a new binary operator $*$ on the integers \mathbb{Z} by $x * y=x+y+7$.
(a) Show that $(\mathbb{Z}, *)$ is a group.
(b) Is it isomorphic to $(\mathbb{Z},+)$?
3. Let a be an element of order n in the group G.
(a) Show that if $a^{k}=e$, then n divides k.
(b) Show that for any integer $k>1$, the order of the cyclic group $<a^{k}>$ is $\frac{n}{\operatorname{gcd}(k, n)}$.
4. Show that if every element x in a group is its own inverse then it is abelian.
5. Let $G=(\mathbb{Z} / m n \mathbb{Z},+)$, where m and n are coprime integers. Let $H=\{h \in G$: order h divides $m\}$ and $K=\{k \in G$: order k divides $n\}$.
(a) Show that the intersection of H and K is $\{0\}$.
(b) Show that $H+K=G$.
6. Let B be the set of upper triangular matrices in $\mathrm{GL}(2, \mathbb{Q}), T$ be the set of diagonal matrices, and
U be the set of matrices in B with diagonal entries 1 .
(a) Show that B, T, U are subgroups of $\mathrm{GL}(2, \mathbb{Q})$.
(b) Show that U is normal in B, but not normal in $\operatorname{GL}(2, \mathbb{Q})$.
(c) Show that $B=T U$.
(d) Show that the quotient group B / U is isomorphic to T.
