Algebra Hour Exam I

October 31, 2012

Print Name:
Id No.:

This exam is closed-book, closed-notes. Show all your work in order to receive partial or full credit. The exam is worth 100 points. You have one micro-century to finish the exam.

1. Consider the permutation

$$
\gamma=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 7 & 6 & 1 & 5 & 2
\end{array}\right)
$$

(a) (5 pts) Express γ as a product of disjoint cycles.
(b) (5 pts) What is the order of γ ?
(c) $(5 \mathrm{pts})$ Find $\operatorname{sgn}(\gamma)$.
(d) (10 pts) Calculate $\alpha \gamma \alpha^{-1}$, where $\alpha=(132)(56)$.
(e) (10 pts) Find a permutation ω in S_{7} different from α such that

$$
\omega \gamma \omega^{-1}=\alpha \gamma \alpha^{-1}
$$

2. Let H be a subgroup of the group G.
(a) (5 pts) Give the definition of the index $[G: H]$.
(b) Suppose $[G: H]=2$. Let a and b be two elements in G but not in H.
i. $(8 \mathrm{pts})$ Show that $a H=b H \neq H$.
ii. (10 pts) Show that $a b$ lies in H.
3. True or false with reasons, 7 points each. You may quote statements proved in class or in the textbook, or from homework assignments.
(i) Let G be a cyclic group of order 10. Then G has 4 distinct subgroups.
(ii) If a group has order 20 , then it does not contain an element of order 6 .
(iii) Let $Z(G)$ be the center of the group G. Then $Z(G)$ is a normal subgroup of G.
(vi) Let $f: G \rightarrow H$ be a group homomorphism. Then $f(x)$ and x have the same order for all elements x of G.
(v) Any two groups of order 13 are isomorphic.
(vi) The group $H=\{e,(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of S_{5}.
