Advanced Calculus: 15-Minute Quiz 04

Name : \qquad Student ID \#: \qquad Score : \qquad

1. Consider the convergence of the series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}= \begin{cases}3^{-n} & \text { for } n \text { odd } \\ 3^{-(n-2)} & \text { for } n \text { even }\end{cases}$
(a) Is it helpful to use the ratio test?
(b) How about the root test?
2. Theorem 8.10 tells us that if $\left\{f_{n}: A \rightarrow \mathbb{R}\right\}$ is a sequence of continuous functions and if $\left\{f_{n}\right\}$ converges uniformly on A to f, then \qquad
3. Theorem 8.11 tells us that if $\left\{f_{n}:[a, b] \rightarrow \mathbb{R}\right\}$ is a sequence of bounded and integrable functions and if $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$ to f, then \qquad
\qquad
4. Let $f_{n}(x)=x+\frac{1}{1+n x}, x \in[0, \infty)$. We know that $\left\{f_{n}\right\}$ converges pointwise on $[0, \infty)$ to the limit function f

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)= \begin{cases}1 & \text { for } x=0 \\ x & \text { for } x>0\end{cases}
$$

Does the sequence $\left\{f_{n}\right\}$ converge uniformly on $[0, \infty)$?

