3rd Exam for Advanced Calculus II

Name : \qquad Student ID \# : \qquad Score : \qquad

1. For any $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}$
(a) Prove that $\left|x_{1} y_{1}+\cdots+x_{n} y_{n}\right| \leq \sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \cdot \sqrt{y_{1}^{2}+\cdots+y_{n}^{2}}$.
(b) Prove that $\left(x_{1}+\cdots+x_{n}\right)^{2} \leq n\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$.
2. Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be continuous. Let S and T be closed subsets in \mathbb{R}^{4} given by

$$
S \subset\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}^{2}+x_{2}^{2} \leq M_{1}\right\} \& T \subset\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{3}^{2}+x_{4}^{2} \leq M_{2}\right\}
$$

Show that f attains a maximum and a minimum on the set $S \cap T$.
3. A set $A \subseteq \mathbb{R}^{n}$ is said to be convex if for each pair of points $\mathbf{a}, \mathbf{b} \in A$, the line segment joining \mathbf{a} and \mathbf{b} is also contained in A. This line segment is easily parameterized by

$$
\mathbf{x}(t)=(1-t) \mathbf{a}+t \mathbf{b}
$$

Assume A and B are convex sets in \mathbb{R}^{n}.
(a) Show that $A \cap B$ is a convex set in \mathbb{R}^{n}.
(b) Show that $A+B=\{\mathbf{a}+\mathbf{b} \mid \mathbf{a} \in A, \mathbf{b} \in B\}$ is a convex set in \mathbb{R}^{n}.
4. Differentiability: (being differentiable $=$ having a linear approximation)
(a) Is the function $f(x, y)=x|y|$ differentiable at the point $(0,0)$?
(b) Is the function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{4}-y^{2}}{x^{4}+y^{2}} & \text { for }(x, y) \neq(0,0) \\ 0 & \text { for }(x, y)=(0,0)\end{array}\right.$ differentiable at the point $(0,0)$?
(c) Is the function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2} y+x y}{\sqrt{x^{2}+y^{2}}} & \text { for }(x, y) \neq(0,0) \\ 0 & \text { for }(x, y)=(0,0)\end{array}\right.$ differentiable at the point $(0,0)$?
5. Consider the function $f(x, y)=\frac{2 y^{2}}{x^{2}+3 x y}$.
(a) Calculate the linear approximation of f at the point $(1,-1)$.
(b) Calculate the directional derivative of the function f in the direction of $\overrightarrow{\mathbf{u}}=\frac{2}{\sqrt{13}} \vec{\imath}+\frac{3}{\sqrt{13}} \vec{\jmath}$ at the point $(1,-1)$.
6. Consider the function $f(x, y)=\frac{x^{2}+y^{2}}{4+y^{3}}$. What is the direction of steepest descent for the function f at the point $(2,1)$?

