2nd Exam for Advanced Calculus

Name: \qquad Student ID \#: \qquad Score: \qquad

1. Consider the series $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$.
(a) Find a formula for the n-th partial sum.
(b) Compute the sum of the series.
2. Does the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converge?
3. Which of the following series converge absolutely, which converge conditionally, and which diverge?
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}$
(b) $\sum_{n=2}^{\infty} \frac{\cos n \pi}{n \sqrt[4]{\ln n}}$
4. Power Series:
(a) Calculate the radius of convergence for the power series: $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n}$.
(b) Determine the interval of convergence for the power series: $\sum_{n=1}^{\infty} \frac{7^{n}(x-1)^{n}}{\sqrt{n}}$.
5. Applications of the Power Series:
(a) Find the sum of the infinite series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$.
(b) Let $f(x)=\frac{x^{2}}{1-x}$. Calculate its $101^{\text {st }}$ derivative $f^{(101)}(0)$ at 0 .
(c) Use power series to estimate the value of the integral $\int_{0}^{1} \sin x^{3} d x$ with an error <0.001.
