1st Exam for Advanced Calculus II

Name : \qquad Student ID \# : \qquad Score: \qquad

1. Find the sum of the following series:
(a) $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n-1}-3^{n}}{2^{2 n}}$
(c) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{n+1} \frac{1}{n}+\cdots$
2. Determine the convergence of the following series:
(a) $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}= \begin{cases}3^{-n} & \text { for } n \text { odd } \\ 3^{-(n-2)} & \text { for } n \text { even }\end{cases}$
(b) $\sum_{n=1}^{\infty}\left(\frac{n-2}{n}\right)^{n}$
(c) $\sum_{n=1}^{\infty} n \sin \frac{1}{n}$
(d) $\sum_{n=1}^{\infty}\left(\sqrt{n^{2}+n}-n\right)$
(e) $\sum_{n=1}^{\infty} \frac{\log n}{n^{1.001}}$
3. Suppose that the series $\sum_{n} a_{n}$ converges absolutely and that b_{n} is a bounded sequence. Show that the series $\sum_{n} a_{n} b_{n}$ converges absolutely.
4. Let $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$. Show that the sequence $\left\{f_{n}\right\}$ converges uniformly on all of \mathbb{R} to $f(x)=|x|$.
5. Weierstrass M-test
(a) State and prove Weierstrass M-test.
(b) Show that the series $\sum_{n=1}^{\infty} \frac{x}{n(n+x)}$ of functions converges to a continuous function on the interval $[0, \infty)$.
(c) Does the series $\sum_{n=1}^{\infty} \frac{x}{1+x^{2} n^{2}}$ of functions converge uniformly on the interval $[0, \infty) ?$
